Metamath Proof Explorer


Theorem ne3anior

Description: A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013)

Ref Expression
Assertion ne3anior A B C D E F ¬ A = B C = D E = F

Proof

Step Hyp Ref Expression
1 3anor A B C D E F ¬ ¬ A B ¬ C D ¬ E F
2 nne ¬ A B A = B
3 nne ¬ C D C = D
4 nne ¬ E F E = F
5 2 3 4 3orbi123i ¬ A B ¬ C D ¬ E F A = B C = D E = F
6 1 5 xchbinx A B C D E F ¬ A = B C = D E = F