Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated equality
nebi
Next ⟩
pm13.18
Metamath Proof Explorer
Ascii
Unicode
Theorem
nebi
Description:
Contraposition law for inequality.
(Contributed by
NM
, 28-Dec-2008)
Ref
Expression
Assertion
nebi
⊢
A
=
B
↔
C
=
D
↔
A
≠
B
↔
C
≠
D
Proof
Step
Hyp
Ref
Expression
1
id
⊢
A
=
B
↔
C
=
D
→
A
=
B
↔
C
=
D
2
1
necon3bid
⊢
A
=
B
↔
C
=
D
→
A
≠
B
↔
C
≠
D
3
id
⊢
A
≠
B
↔
C
≠
D
→
A
≠
B
↔
C
≠
D
4
3
necon4bid
⊢
A
≠
B
↔
C
≠
D
→
A
=
B
↔
C
=
D
5
2
4
impbii
⊢
A
=
B
↔
C
=
D
↔
A
≠
B
↔
C
≠
D