Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated equality
necon3bbid
Next ⟩
necon1abid
Metamath Proof Explorer
Ascii
Unicode
Theorem
necon3bbid
Description:
Deduction from equality to inequality.
(Contributed by
NM
, 2-Jun-2007)
Ref
Expression
Hypothesis
necon3bbid.1
⊢
φ
→
ψ
↔
A
=
B
Assertion
necon3bbid
⊢
φ
→
¬
ψ
↔
A
≠
B
Proof
Step
Hyp
Ref
Expression
1
necon3bbid.1
⊢
φ
→
ψ
↔
A
=
B
2
1
bicomd
⊢
φ
→
A
=
B
↔
ψ
3
2
necon3abid
⊢
φ
→
A
≠
B
↔
¬
ψ
4
3
bicomd
⊢
φ
→
¬
ψ
↔
A
≠
B