Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated equality
necon3bii
Next ⟩
necom
Metamath Proof Explorer
Ascii
Unicode
Theorem
necon3bii
Description:
Inference from equality to inequality.
(Contributed by
NM
, 23-Feb-2005)
Ref
Expression
Hypothesis
necon3bii.1
⊢
A
=
B
↔
C
=
D
Assertion
necon3bii
⊢
A
≠
B
↔
C
≠
D
Proof
Step
Hyp
Ref
Expression
1
necon3bii.1
⊢
A
=
B
↔
C
=
D
2
1
necon3abii
⊢
A
≠
B
↔
¬
C
=
D
3
df-ne
⊢
C
≠
D
↔
¬
C
=
D
4
2
3
bitr4i
⊢
A
≠
B
↔
C
≠
D