Metamath Proof Explorer


Theorem neg11ad

Description: The negatives of two complex numbers are equal iff they are equal. Deduction form of neg11 . Generalization of neg11d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φ A
neg11ad.2 φ B
Assertion neg11ad φ A = B A = B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 neg11ad.2 φ B
3 neg11 A B A = B A = B
4 1 2 3 syl2anc φ A = B A = B