Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Imaginary and complex number properties
neg1lt0
Next ⟩
negneg1e1
Metamath Proof Explorer
Ascii
Unicode
Theorem
neg1lt0
Description:
-1 is less than 0.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
neg1lt0
⊢
−
1
<
0
Proof
Step
Hyp
Ref
Expression
1
0lt1
⊢
0
<
1
2
1re
⊢
1
∈
ℝ
3
lt0neg2
⊢
1
∈
ℝ
→
0
<
1
↔
−
1
<
0
4
2
3
ax-mp
⊢
0
<
1
↔
−
1
<
0
5
1
4
mpbi
⊢
−
1
<
0