Database
REAL AND COMPLEX NUMBERS
Integer sets
Some properties of specific numbers
neg1lt0
Next ⟩
negneg1e1
Metamath Proof Explorer
Ascii
Unicode
Theorem
neg1lt0
Description:
-1 is less than 0.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
neg1lt0
⊢
−
1
<
0
Proof
Step
Hyp
Ref
Expression
1
neg0
⊢
−
0
=
0
2
0lt1
⊢
0
<
1
3
1
2
eqbrtri
⊢
−
0
<
1
4
1re
⊢
1
∈
ℝ
5
0re
⊢
0
∈
ℝ
6
4
5
ltnegcon1i
⊢
−
1
<
0
↔
−
0
<
1
7
3
6
mpbir
⊢
−
1
<
0