Metamath Proof Explorer


Theorem neg1lt0

Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1lt0 1 < 0

Proof

Step Hyp Ref Expression
1 neg0 0 = 0
2 0lt1 0 < 1
3 1 2 eqbrtri 0 < 1
4 1re 1
5 0re 0
6 4 5 ltnegcon1i 1 < 0 0 < 1
7 3 6 mpbir 1 < 0