Metamath Proof Explorer


Theorem neg1lt0

Description: -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1lt0 1 < 0

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 1re 1
3 lt0neg2 1 0 < 1 1 < 0
4 2 3 ax-mp 0 < 1 1 < 0
5 1 4 mpbi 1 < 0