Metamath Proof Explorer


Theorem neg1mulneg1e1

Description: -u 1 x. -u 1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neg1mulneg1e1 -1 -1 = 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 1 1 mul2negi -1 -1 = 1 1
3 1t1e1 1 1 = 1
4 2 3 eqtri -1 -1 = 1