Database
REAL AND COMPLEX NUMBERS
Integer sets
Some properties of specific numbers
neg1ne0
Next ⟩
neg1lt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
neg1ne0
Description:
-1 is nonzero.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
neg1ne0
⊢
−
1
≠
0
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
ax-1ne0
⊢
1
≠
0
3
1
2
negne0i
⊢
−
1
≠
0