Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
neg1sqe1
Next ⟩
sq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
neg1sqe1
Description:
-u 1
squared is 1.
(Contributed by
David A. Wheeler
, 8-Dec-2018)
Ref
Expression
Assertion
neg1sqe1
⊢
−
1
2
=
1
Proof
Step
Hyp
Ref
Expression
1
ax-1cn
⊢
1
∈
ℂ
2
sqneg
⊢
1
∈
ℂ
→
−
1
2
=
1
2
3
1
2
ax-mp
⊢
−
1
2
=
1
2
4
sq1
⊢
1
2
=
1
5
3
4
eqtri
⊢
−
1
2
=
1