Metamath Proof Explorer


Theorem negcncf

Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis negcncf.1 F = x A x
Assertion negcncf A F : A cn

Proof

Step Hyp Ref Expression
1 negcncf.1 F = x A x
2 ssel2 A x A x
3 2 mulm1d A x A -1 x = x
4 3 mpteq2dva A x A -1 x = x A x
5 4 1 eqtr4di A x A -1 x = F
6 eqid TopOpen fld = TopOpen fld
7 6 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
8 7 a1i A × TopOpen fld × t TopOpen fld Cn TopOpen fld
9 neg1cn 1
10 ssid
11 cncfmptc 1 A x A 1 : A cn
12 9 10 11 mp3an13 A x A 1 : A cn
13 cncfmptid A x A x : A cn
14 10 13 mpan2 A x A x : A cn
15 6 8 12 14 cncfmpt2f A x A -1 x : A cn
16 5 15 eqeltrrd A F : A cn