Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
negcncf
Next ⟩
negfcncf
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcncf
Description:
The negative function is continuous.
(Contributed by
Mario Carneiro
, 30-Dec-2016)
Ref
Expression
Hypothesis
negcncf.1
⊢
F
=
x
∈
A
⟼
−
x
Assertion
negcncf
⊢
A
⊆
ℂ
→
F
:
A
⟶
cn
ℂ
Proof
Step
Hyp
Ref
Expression
1
negcncf.1
⊢
F
=
x
∈
A
⟼
−
x
2
ssel2
⊢
A
⊆
ℂ
∧
x
∈
A
→
x
∈
ℂ
3
2
mulm1d
⊢
A
⊆
ℂ
∧
x
∈
A
→
-1
⁢
x
=
−
x
4
3
mpteq2dva
⊢
A
⊆
ℂ
→
x
∈
A
⟼
-1
⁢
x
=
x
∈
A
⟼
−
x
5
4
1
eqtr4di
⊢
A
⊆
ℂ
→
x
∈
A
⟼
-1
⁢
x
=
F
6
eqid
⊢
TopOpen
⁡
ℂ
fld
=
TopOpen
⁡
ℂ
fld
7
6
mulcn
⊢
×
∈
TopOpen
⁡
ℂ
fld
×
t
TopOpen
⁡
ℂ
fld
Cn
TopOpen
⁡
ℂ
fld
8
7
a1i
⊢
A
⊆
ℂ
→
×
∈
TopOpen
⁡
ℂ
fld
×
t
TopOpen
⁡
ℂ
fld
Cn
TopOpen
⁡
ℂ
fld
9
neg1cn
⊢
−
1
∈
ℂ
10
ssid
⊢
ℂ
⊆
ℂ
11
cncfmptc
⊢
−
1
∈
ℂ
∧
A
⊆
ℂ
∧
ℂ
⊆
ℂ
→
x
∈
A
⟼
−
1
:
A
⟶
cn
ℂ
12
9
10
11
mp3an13
⊢
A
⊆
ℂ
→
x
∈
A
⟼
−
1
:
A
⟶
cn
ℂ
13
cncfmptid
⊢
A
⊆
ℂ
∧
ℂ
⊆
ℂ
→
x
∈
A
⟼
x
:
A
⟶
cn
ℂ
14
10
13
mpan2
⊢
A
⊆
ℂ
→
x
∈
A
⟼
x
:
A
⟶
cn
ℂ
15
6
8
12
14
cncfmpt2f
⊢
A
⊆
ℂ
→
x
∈
A
⟼
-1
⁢
x
:
A
⟶
cn
ℂ
16
5
15
eqeltrrd
⊢
A
⊆
ℂ
→
F
:
A
⟶
cn
ℂ