Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negcon1
Next ⟩
negcon2
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcon1
Description:
Negative contraposition law.
(Contributed by
NM
, 9-May-2004)
Ref
Expression
Assertion
negcon1
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
=
B
↔
−
B
=
A
Proof
Step
Hyp
Ref
Expression
1
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
2
neg11
⊢
−
A
∈
ℂ
∧
B
∈
ℂ
→
−
−
A
=
−
B
↔
−
A
=
B
3
1
2
sylan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
−
A
=
−
B
↔
−
A
=
B
4
negneg
⊢
A
∈
ℂ
→
−
−
A
=
A
5
4
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
−
A
=
A
6
5
eqeq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
−
A
=
−
B
↔
A
=
−
B
7
3
6
bitr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
=
B
↔
A
=
−
B
8
eqcom
⊢
A
=
−
B
↔
−
B
=
A
9
7
8
bitrdi
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
=
B
↔
−
B
=
A