Metamath Proof Explorer


Theorem negcon1

Description: Negative contraposition law. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion negcon1 A B A = B B = A

Proof

Step Hyp Ref Expression
1 negcl A A
2 neg11 A B A = B A = B
3 1 2 sylan A B A = B A = B
4 negneg A A = A
5 4 adantr A B A = A
6 5 eqeq1d A B A = B A = B
7 3 6 bitr3d A B A = B A = B
8 eqcom A = B B = A
9 7 8 bitrdi A B A = B B = A