Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negcon1i
Next ⟩
negcon2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcon1i
Description:
Negative contraposition law.
(Contributed by
NM
, 25-Aug-1999)
Ref
Expression
Hypotheses
negidi.1
⊢
A
∈
ℂ
pncan3i.2
⊢
B
∈
ℂ
Assertion
negcon1i
⊢
−
A
=
B
↔
−
B
=
A
Proof
Step
Hyp
Ref
Expression
1
negidi.1
⊢
A
∈
ℂ
2
pncan3i.2
⊢
B
∈
ℂ
3
negcon1
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
=
B
↔
−
B
=
A
4
1
2
3
mp2an
⊢
−
A
=
B
↔
−
B
=
A