Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negcon2
Next ⟩
negeq0
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcon2
Description:
Negative contraposition law.
(Contributed by
NM
, 14-Nov-2004)
Ref
Expression
Assertion
negcon2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
=
−
B
↔
B
=
−
A
Proof
Step
Hyp
Ref
Expression
1
eqcom
⊢
A
=
−
B
↔
−
B
=
A
2
negcon1
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
=
B
↔
−
B
=
A
3
1
2
bitr4id
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
=
−
B
↔
−
A
=
B
4
eqcom
⊢
−
A
=
B
↔
B
=
−
A
5
3
4
bitrdi
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
=
−
B
↔
B
=
−
A