Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negcon2i
Next ⟩
negdii
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcon2i
Description:
Negative contraposition law.
(Contributed by
NM
, 25-Aug-1999)
Ref
Expression
Hypotheses
negidi.1
⊢
A
∈
ℂ
pncan3i.2
⊢
B
∈
ℂ
Assertion
negcon2i
⊢
A
=
−
B
↔
B
=
−
A
Proof
Step
Hyp
Ref
Expression
1
negidi.1
⊢
A
∈
ℂ
2
pncan3i.2
⊢
B
∈
ℂ
3
negcon2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
=
−
B
↔
B
=
−
A
4
1
2
3
mp2an
⊢
A
=
−
B
↔
B
=
−
A