Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negdi2
Next ⟩
negsubdi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
negdi2
Description:
Distribution of negative over addition.
(Contributed by
NM
, 1-Jan-2006)
Ref
Expression
Assertion
negdi2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
+
B
=
-
A
-
B
Proof
Step
Hyp
Ref
Expression
1
negdi
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
+
B
=
-
A
+
−
B
2
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
3
negsub
⊢
−
A
∈
ℂ
∧
B
∈
ℂ
→
-
A
+
−
B
=
-
A
-
B
4
2
3
sylan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
-
A
+
−
B
=
-
A
-
B
5
1
4
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
+
B
=
-
A
-
B