Metamath Proof Explorer


Theorem negdi2

Description: Distribution of negative over addition. (Contributed by NM, 1-Jan-2006)

Ref Expression
Assertion negdi2 A B A + B = - A - B

Proof

Step Hyp Ref Expression
1 negdi A B A + B = - A + B
2 negcl A A
3 negsub A B - A + B = - A - B
4 2 3 sylan A B - A + B = - A - B
5 1 4 eqtrd A B A + B = - A - B