Metamath Proof Explorer


Theorem negdvdsb

Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion negdvdsb M N M N -M N

Proof

Step Hyp Ref Expression
1 id M N M N
2 znegcl M M
3 2 anim1i M N M N
4 znegcl x x
5 4 adantl M N x x
6 zcn x x
7 zcn M M
8 mul2neg x M x -M = x M
9 6 7 8 syl2anr M x x -M = x M
10 9 adantlr M N x x -M = x M
11 10 eqeq1d M N x x -M = N x M = N
12 11 biimprd M N x x M = N x -M = N
13 1 3 5 12 dvds1lem M N M N -M N
14 mulneg12 x M x M = x -M
15 6 7 14 syl2anr M x x M = x -M
16 15 adantlr M N x x M = x -M
17 16 eqeq1d M N x x M = N x -M = N
18 17 biimprd M N x x -M = N x M = N
19 3 1 5 18 dvds1lem M N -M N M N
20 13 19 impbid M N M N -M N