Metamath Proof Explorer


Theorem negelrpd

Description: The negation of a negative number is in the positive real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses negelrpd.1 φ A
negelrpd.2 φ A < 0
Assertion negelrpd φ A +

Proof

Step Hyp Ref Expression
1 negelrpd.1 φ A
2 negelrpd.2 φ A < 0
3 negelrp A A + A < 0
4 1 3 syl φ A + A < 0
5 2 4 mpbird φ A +