Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negeq0d
Next ⟩
negne0bd
Metamath Proof Explorer
Ascii
Unicode
Theorem
negeq0d
Description:
A number is zero iff its negative is zero.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypothesis
negidd.1
⊢
φ
→
A
∈
ℂ
Assertion
negeq0d
⊢
φ
→
A
=
0
↔
−
A
=
0
Proof
Step
Hyp
Ref
Expression
1
negidd.1
⊢
φ
→
A
∈
ℂ
2
negeq0
⊢
A
∈
ℂ
→
A
=
0
↔
−
A
=
0
3
1
2
syl
⊢
φ
→
A
=
0
↔
−
A
=
0