Metamath Proof Explorer


Theorem negexsr

Description: Existence of negative signed real. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 2-May-1996) (New usage is discouraged.)

Ref Expression
Assertion negexsr A 𝑹 x 𝑹 A + 𝑹 x = 0 𝑹

Proof

Step Hyp Ref Expression
1 m1r -1 𝑹 𝑹
2 mulclsr A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 𝑹
3 1 2 mpan2 A 𝑹 A 𝑹 -1 𝑹 𝑹
4 pn0sr A 𝑹 A + 𝑹 A 𝑹 -1 𝑹 = 0 𝑹
5 oveq2 x = A 𝑹 -1 𝑹 A + 𝑹 x = A + 𝑹 A 𝑹 -1 𝑹
6 5 eqeq1d x = A 𝑹 -1 𝑹 A + 𝑹 x = 0 𝑹 A + 𝑹 A 𝑹 -1 𝑹 = 0 𝑹
7 6 rspcev A 𝑹 -1 𝑹 𝑹 A + 𝑹 A 𝑹 -1 𝑹 = 0 𝑹 x 𝑹 A + 𝑹 x = 0 𝑹
8 3 4 7 syl2anc A 𝑹 x 𝑹 A + 𝑹 x = 0 𝑹