Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|
2 |
|
renegcl |
|
3 |
1 2
|
syl6 |
|
4 |
3
|
ralrimiv |
|
5 |
|
dmmptg |
|
6 |
4 5
|
syl |
|
7 |
6
|
eqcomd |
|
8 |
7
|
eleq1d |
|
9 |
|
funmpt |
|
10 |
|
fundmfibi |
|
11 |
9 10
|
mp1i |
|
12 |
8 11
|
bitr4d |
|
13 |
|
reex |
|
14 |
13
|
ssex |
|
15 |
14
|
mptexd |
|
16 |
|
eqid |
|
17 |
16
|
negf1o |
|
18 |
|
f1of1 |
|
19 |
17 18
|
syl |
|
20 |
|
f1vrnfibi |
|
21 |
15 19 20
|
syl2anc |
|
22 |
1
|
imp |
|
23 |
2
|
adantl |
|
24 |
|
recn |
|
25 |
24
|
negnegd |
|
26 |
25
|
eqcomd |
|
27 |
26
|
eleq1d |
|
28 |
27
|
biimpcd |
|
29 |
28
|
adantl |
|
30 |
29
|
imp |
|
31 |
23 30
|
jca |
|
32 |
22 31
|
mpdan |
|
33 |
|
eleq1 |
|
34 |
|
negeq |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
anbi12d |
|
37 |
32 36
|
syl5ibrcom |
|
38 |
37
|
rexlimdva |
|
39 |
|
simprr |
|
40 |
|
negeq |
|
41 |
40
|
eqeq2d |
|
42 |
41
|
adantl |
|
43 |
|
recn |
|
44 |
|
negneg |
|
45 |
44
|
eqcomd |
|
46 |
43 45
|
syl |
|
47 |
46
|
ad2antrl |
|
48 |
39 42 47
|
rspcedvd |
|
49 |
48
|
ex |
|
50 |
38 49
|
impbid |
|
51 |
50
|
abbidv |
|
52 |
16
|
rnmpt |
|
53 |
|
df-rab |
|
54 |
51 52 53
|
3eqtr4g |
|
55 |
54
|
eleq1d |
|
56 |
12 21 55
|
3bitrd |
|
57 |
56
|
biimpa |
|