Metamath Proof Explorer


Theorem neggcd

Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion neggcd M N -M gcd N = M gcd N

Proof

Step Hyp Ref Expression
1 gcdneg N M N gcd -M = N gcd M
2 1 ancoms M N N gcd -M = N gcd M
3 znegcl M M
4 gcdcom M N -M gcd N = N gcd -M
5 3 4 sylan M N -M gcd N = N gcd -M
6 gcdcom M N M gcd N = N gcd M
7 2 5 6 3eqtr4d M N -M gcd N = M gcd N