Database
SURREAL NUMBERS
Surreal arithmetic
Negation and Subtraction
negs0s
Next ⟩
negs1s
Metamath Proof Explorer
Ascii
Unicode
Theorem
negs0s
Description:
Negative surreal zero is surreal zero.
(Contributed by
Scott Fenton
, 20-Aug-2024)
Ref
Expression
Assertion
negs0s
⊢
+
s
⁡
0
s
=
0
s
Proof
Step
Hyp
Ref
Expression
1
right0s
⊢
R
⁡
0
s
=
∅
2
1
imaeq2i
⊢
+
s
R
⁡
0
s
=
+
s
∅
3
ima0
⊢
+
s
∅
=
∅
4
2
3
eqtri
⊢
+
s
R
⁡
0
s
=
∅
5
left0s
⊢
L
⁡
0
s
=
∅
6
5
imaeq2i
⊢
+
s
L
⁡
0
s
=
+
s
∅
7
6
3
eqtri
⊢
+
s
L
⁡
0
s
=
∅
8
4
7
oveq12i
⊢
+
s
R
⁡
0
s
|
s
+
s
L
⁡
0
s
=
∅
|
s
∅
9
0sno
⊢
0
s
∈
No
10
negsval
⊢
0
s
∈
No
→
+
s
⁡
0
s
=
+
s
R
⁡
0
s
|
s
+
s
L
⁡
0
s
11
9
10
ax-mp
⊢
+
s
⁡
0
s
=
+
s
R
⁡
0
s
|
s
+
s
L
⁡
0
s
12
df-0s
⊢
0
s
=
∅
|
s
∅
13
8
11
12
3eqtr4i
⊢
+
s
⁡
0
s
=
0
s