Metamath Proof Explorer


Theorem negs0s

Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion negs0s + s 0 s = 0 s

Proof

Step Hyp Ref Expression
1 right0s R 0 s =
2 1 imaeq2i + s R 0 s = + s
3 ima0 + s =
4 2 3 eqtri + s R 0 s =
5 left0s L 0 s =
6 5 imaeq2i + s L 0 s = + s
7 6 3 eqtri + s L 0 s =
8 4 7 oveq12i + s R 0 s | s + s L 0 s = | s
9 0sno 0 s No
10 negsval 0 s No + s 0 s = + s R 0 s | s + s L 0 s
11 9 10 ax-mp + s 0 s = + s R 0 s | s + s L 0 s
12 df-0s 0 s = | s
13 8 11 12 3eqtr4i + s 0 s = 0 s