Metamath Proof Explorer


Theorem negs11

Description: Surreal negation is one-to-one. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negs11 ANoBNo+sA=+sBA=B

Proof

Step Hyp Ref Expression
1 fveq2 +sA=+sB+s+sA=+s+sB
2 negnegs ANo+s+sA=A
3 negnegs BNo+s+sB=B
4 2 3 eqeqan12d ANoBNo+s+sA=+s+sBA=B
5 1 4 imbitrid ANoBNo+sA=+sBA=B
6 fveq2 A=B+sA=+sB
7 5 6 impbid1 ANoBNo+sA=+sBA=B