Metamath Proof Explorer


Theorem negs1s

Description: An expression for negative surreal one. (Contributed by Scott Fenton, 24-Jul-2025)

Ref Expression
Assertion negs1s + s 1 s = | s 0 s

Proof

Step Hyp Ref Expression
1 1sno 1 s No
2 negsval 1 s No + s 1 s = + s R 1 s | s + s L 1 s
3 1 2 ax-mp + s 1 s = + s R 1 s | s + s L 1 s
4 right1s R 1 s =
5 4 imaeq2i + s R 1 s = + s
6 ima0 + s =
7 5 6 eqtri + s R 1 s =
8 left1s L 1 s = 0 s
9 8 imaeq2i + s L 1 s = + s 0 s
10 negsfn + s Fn No
11 0sno 0 s No
12 fnimapr + s Fn No 0 s No 0 s No + s 0 s 0 s = + s 0 s + s 0 s
13 10 11 11 12 mp3an + s 0 s 0 s = + s 0 s + s 0 s
14 negs0s + s 0 s = 0 s
15 14 14 preq12i + s 0 s + s 0 s = 0 s 0 s
16 13 15 eqtri + s 0 s 0 s = 0 s 0 s
17 dfsn2 0 s = 0 s 0 s
18 17 imaeq2i + s 0 s = + s 0 s 0 s
19 16 18 17 3eqtr4i + s 0 s = 0 s
20 9 19 eqtri + s L 1 s = 0 s
21 7 20 oveq12i + s R 1 s | s + s L 1 s = | s 0 s
22 3 21 eqtri + s 1 s = | s 0 s