Metamath Proof Explorer


Theorem negscut

Description: The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscut A No + s A No + s R A s + s A + s A s + s L A

Proof

Step Hyp Ref Expression
1 negsprop x No y No + s x No x < s y + s y < s + s x
2 1 a1d x No y No bday x bday y bday A bday 0 s + s x No x < s y + s y < s + s x
3 2 rgen2 x No y No bday x bday y bday A bday 0 s + s x No x < s y + s y < s + s x
4 3 a1i A No x No y No bday x bday y bday A bday 0 s + s x No x < s y + s y < s + s x
5 id A No A No
6 4 5 negsproplem3 A No + s A No + s R A s + s A + s A s + s L A