Database
SURREAL NUMBERS
Surreal arithmetic
Negation and Subtraction
negscut
Next ⟩
negscut2
Metamath Proof Explorer
Ascii
Unicode
Theorem
negscut
Description:
The cut properties of surreal negation.
(Contributed by
Scott Fenton
, 3-Feb-2025)
Ref
Expression
Assertion
negscut
⊢
A
∈
No
→
+
s
⁡
A
∈
No
∧
+
s
R
⁡
A
≪
s
+
s
⁡
A
∧
+
s
⁡
A
≪
s
+
s
L
⁡
A
Proof
Step
Hyp
Ref
Expression
1
negsprop
⊢
x
∈
No
∧
y
∈
No
→
+
s
⁡
x
∈
No
∧
x
<
s
y
→
+
s
⁡
y
<
s
+
s
⁡
x
2
1
a1d
⊢
x
∈
No
∧
y
∈
No
→
bday
⁡
x
∪
bday
⁡
y
∈
bday
⁡
A
∪
bday
⁡
0
s
→
+
s
⁡
x
∈
No
∧
x
<
s
y
→
+
s
⁡
y
<
s
+
s
⁡
x
3
2
rgen2
⊢
∀
x
∈
No
∀
y
∈
No
bday
⁡
x
∪
bday
⁡
y
∈
bday
⁡
A
∪
bday
⁡
0
s
→
+
s
⁡
x
∈
No
∧
x
<
s
y
→
+
s
⁡
y
<
s
+
s
⁡
x
4
3
a1i
⊢
A
∈
No
→
∀
x
∈
No
∀
y
∈
No
bday
⁡
x
∪
bday
⁡
y
∈
bday
⁡
A
∪
bday
⁡
0
s
→
+
s
⁡
x
∈
No
∧
x
<
s
y
→
+
s
⁡
y
<
s
+
s
⁡
x
5
id
⊢
A
∈
No
→
A
∈
No
6
4
5
negsproplem3
⊢
A
∈
No
→
+
s
⁡
A
∈
No
∧
+
s
R
⁡
A
≪
s
+
s
⁡
A
∧
+
s
⁡
A
≪
s
+
s
L
⁡
A