Metamath Proof Explorer


Theorem negscut2

Description: The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscut2 Could not format assertion : No typesetting found for |- ( A e. No -> ( -us " ( _Right ` A ) ) <

Proof

Step Hyp Ref Expression
1 negscut Could not format ( A e. No -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <
2 1 simp2d Could not format ( A e. No -> ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) <
3 1 simp3d Could not format ( A e. No -> { ( -us ` A ) } < { ( -us ` A ) } <
4 fvex Could not format ( -us ` A ) e. _V : No typesetting found for |- ( -us ` A ) e. _V with typecode |-
5 4 snnz Could not format { ( -us ` A ) } =/= (/) : No typesetting found for |- { ( -us ` A ) } =/= (/) with typecode |-
6 sslttr Could not format ( ( ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) <
7 5 6 mp3an3 Could not format ( ( ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) <
8 2 3 7 syl2anc Could not format ( A e. No -> ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) <