Metamath Proof Explorer


Theorem negsf

Description: Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsf Could not format assertion : No typesetting found for |- -us : No --> No with typecode |-

Proof

Step Hyp Ref Expression
1 negsfn Could not format -us Fn No : No typesetting found for |- -us Fn No with typecode |-
2 negscl Could not format ( x e. No -> ( -us ` x ) e. No ) : No typesetting found for |- ( x e. No -> ( -us ` x ) e. No ) with typecode |-
3 2 rgen Could not format A. x e. No ( -us ` x ) e. No : No typesetting found for |- A. x e. No ( -us ` x ) e. No with typecode |-
4 ffnfv Could not format ( -us : No --> No <-> ( -us Fn No /\ A. x e. No ( -us ` x ) e. No ) ) : No typesetting found for |- ( -us : No --> No <-> ( -us Fn No /\ A. x e. No ( -us ` x ) e. No ) ) with typecode |-
5 1 3 4 mpbir2an Could not format -us : No --> No : No typesetting found for |- -us : No --> No with typecode |-