Metamath Proof Explorer


Theorem negsf1o

Description: Surreal negation is a bijection. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsf1o Could not format assertion : No typesetting found for |- -us : No -1-1-onto-> No with typecode |-

Proof

Step Hyp Ref Expression
1 negsf Could not format -us : No --> No : No typesetting found for |- -us : No --> No with typecode |-
2 negs11 Could not format ( ( x e. No /\ y e. No ) -> ( ( -us ` x ) = ( -us ` y ) <-> x = y ) ) : No typesetting found for |- ( ( x e. No /\ y e. No ) -> ( ( -us ` x ) = ( -us ` y ) <-> x = y ) ) with typecode |-
3 2 biimpd Could not format ( ( x e. No /\ y e. No ) -> ( ( -us ` x ) = ( -us ` y ) -> x = y ) ) : No typesetting found for |- ( ( x e. No /\ y e. No ) -> ( ( -us ` x ) = ( -us ` y ) -> x = y ) ) with typecode |-
4 3 rgen2 Could not format A. x e. No A. y e. No ( ( -us ` x ) = ( -us ` y ) -> x = y ) : No typesetting found for |- A. x e. No A. y e. No ( ( -us ` x ) = ( -us ` y ) -> x = y ) with typecode |-
5 dff13 Could not format ( -us : No -1-1-> No <-> ( -us : No --> No /\ A. x e. No A. y e. No ( ( -us ` x ) = ( -us ` y ) -> x = y ) ) ) : No typesetting found for |- ( -us : No -1-1-> No <-> ( -us : No --> No /\ A. x e. No A. y e. No ( ( -us ` x ) = ( -us ` y ) -> x = y ) ) ) with typecode |-
6 1 4 5 mpbir2an Could not format -us : No -1-1-> No : No typesetting found for |- -us : No -1-1-> No with typecode |-
7 negsfo Could not format -us : No -onto-> No : No typesetting found for |- -us : No -onto-> No with typecode |-
8 df-f1o Could not format ( -us : No -1-1-onto-> No <-> ( -us : No -1-1-> No /\ -us : No -onto-> No ) ) : No typesetting found for |- ( -us : No -1-1-onto-> No <-> ( -us : No -1-1-> No /\ -us : No -onto-> No ) ) with typecode |-
9 6 7 8 mpbir2an Could not format -us : No -1-1-onto-> No : No typesetting found for |- -us : No -1-1-onto-> No with typecode |-