Metamath Proof Explorer


Theorem negsprop

Description: Show closure and ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsprop A No B No + s A No A < s B + s B < s + s A

Proof

Step Hyp Ref Expression
1 bdayelon bday A On
2 bdayelon bday B On
3 1 2 onun2i bday A bday B On
4 risset bday A bday B On a On a = bday A bday B
5 3 4 mpbi a On a = bday A bday B
6 eqeq1 a = b a = bday p bday q b = bday p bday q
7 6 imbi1d a = b a = bday p bday q + s p No p < s q + s q < s + s p b = bday p bday q + s p No p < s q + s q < s + s p
8 7 2ralbidv a = b p No q No a = bday p bday q + s p No p < s q + s q < s + s p p No q No b = bday p bday q + s p No p < s q + s q < s + s p
9 fveq2 p = x bday p = bday x
10 9 uneq1d p = x bday p bday q = bday x bday q
11 10 eqeq2d p = x b = bday p bday q b = bday x bday q
12 fveq2 p = x + s p = + s x
13 12 eleq1d p = x + s p No + s x No
14 breq1 p = x p < s q x < s q
15 12 breq2d p = x + s q < s + s p + s q < s + s x
16 14 15 imbi12d p = x p < s q + s q < s + s p x < s q + s q < s + s x
17 13 16 anbi12d p = x + s p No p < s q + s q < s + s p + s x No x < s q + s q < s + s x
18 11 17 imbi12d p = x b = bday p bday q + s p No p < s q + s q < s + s p b = bday x bday q + s x No x < s q + s q < s + s x
19 fveq2 q = y bday q = bday y
20 19 uneq2d q = y bday x bday q = bday x bday y
21 20 eqeq2d q = y b = bday x bday q b = bday x bday y
22 breq2 q = y x < s q x < s y
23 fveq2 q = y + s q = + s y
24 23 breq1d q = y + s q < s + s x + s y < s + s x
25 22 24 imbi12d q = y x < s q + s q < s + s x x < s y + s y < s + s x
26 25 anbi2d q = y + s x No x < s q + s q < s + s x + s x No x < s y + s y < s + s x
27 21 26 imbi12d q = y b = bday x bday q + s x No x < s q + s q < s + s x b = bday x bday y + s x No x < s y + s y < s + s x
28 18 27 cbvral2vw p No q No b = bday p bday q + s p No p < s q + s q < s + s p x No y No b = bday x bday y + s x No x < s y + s y < s + s x
29 8 28 bitrdi a = b p No q No a = bday p bday q + s p No p < s q + s q < s + s p x No y No b = bday x bday y + s x No x < s y + s y < s + s x
30 raleq a = bday p bday q b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x b bday p bday q x No y No b = bday x bday y + s x No x < s y + s y < s + s x
31 ralrot3 x No y No b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x b bday p bday q x No y No b = bday x bday y + s x No x < s y + s y < s + s x
32 r19.23v b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x
33 risset bday x bday y bday p bday q b bday p bday q b = bday x bday y
34 33 imbi1i bday x bday y bday p bday q + s x No x < s y + s y < s + s x b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x
35 32 34 bitr4i b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x bday x bday y bday p bday q + s x No x < s y + s y < s + s x
36 35 2ralbii x No y No b bday p bday q b = bday x bday y + s x No x < s y + s y < s + s x x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x
37 31 36 bitr3i b bday p bday q x No y No b = bday x bday y + s x No x < s y + s y < s + s x x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x
38 30 37 bitrdi a = bday p bday q b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x
39 simpr p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x
40 simpll p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p No
41 39 40 negsproplem3 p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x + s p No + s R p s + s p + s p s + s L p
42 41 simp1d p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x + s p No
43 simplr p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x
44 simplll p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q p No
45 simpllr p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q q No
46 simpr p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q p < s q
47 43 44 45 46 negsproplem7 p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q + s q < s + s p
48 47 ex p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p < s q + s q < s + s p
49 42 48 jca p No q No x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x + s p No p < s q + s q < s + s p
50 49 expcom x No y No bday x bday y bday p bday q + s x No x < s y + s y < s + s x p No q No + s p No p < s q + s q < s + s p
51 38 50 biimtrdi a = bday p bday q b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x p No q No + s p No p < s q + s q < s + s p
52 51 com3l b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x p No q No a = bday p bday q + s p No p < s q + s q < s + s p
53 52 ralrimivv b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x p No q No a = bday p bday q + s p No p < s q + s q < s + s p
54 53 a1i a On b a x No y No b = bday x bday y + s x No x < s y + s y < s + s x p No q No a = bday p bday q + s p No p < s q + s q < s + s p
55 29 54 tfis2 a On p No q No a = bday p bday q + s p No p < s q + s q < s + s p
56 fveq2 p = A bday p = bday A
57 56 uneq1d p = A bday p bday q = bday A bday q
58 57 eqeq2d p = A a = bday p bday q a = bday A bday q
59 fveq2 p = A + s p = + s A
60 59 eleq1d p = A + s p No + s A No
61 breq1 p = A p < s q A < s q
62 59 breq2d p = A + s q < s + s p + s q < s + s A
63 61 62 imbi12d p = A p < s q + s q < s + s p A < s q + s q < s + s A
64 60 63 anbi12d p = A + s p No p < s q + s q < s + s p + s A No A < s q + s q < s + s A
65 58 64 imbi12d p = A a = bday p bday q + s p No p < s q + s q < s + s p a = bday A bday q + s A No A < s q + s q < s + s A
66 fveq2 q = B bday q = bday B
67 66 uneq2d q = B bday A bday q = bday A bday B
68 67 eqeq2d q = B a = bday A bday q a = bday A bday B
69 breq2 q = B A < s q A < s B
70 fveq2 q = B + s q = + s B
71 70 breq1d q = B + s q < s + s A + s B < s + s A
72 69 71 imbi12d q = B A < s q + s q < s + s A A < s B + s B < s + s A
73 72 anbi2d q = B + s A No A < s q + s q < s + s A + s A No A < s B + s B < s + s A
74 68 73 imbi12d q = B a = bday A bday q + s A No A < s q + s q < s + s A a = bday A bday B + s A No A < s B + s B < s + s A
75 65 74 rspc2v A No B No p No q No a = bday p bday q + s p No p < s q + s q < s + s p a = bday A bday B + s A No A < s B + s B < s + s A
76 55 75 syl5com a On A No B No a = bday A bday B + s A No A < s B + s B < s + s A
77 76 com23 a On a = bday A bday B A No B No + s A No A < s B + s B < s + s A
78 77 rexlimiv a On a = bday A bday B A No B No + s A No A < s B + s B < s + s A
79 5 78 ax-mp A No B No + s A No A < s B + s B < s + s A