Metamath Proof Explorer


Theorem negsproplem1

Description: Lemma for surreal negation. We prove a pair of properties of surreal negation simultaneously. First, we instantiate some quantifiers. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
negsproplem1.1 φ X No
negsproplem1.2 φ Y No
negsproplem1.3 φ bday X bday Y bday A bday B
Assertion negsproplem1 Could not format assertion : No typesetting found for |- ( ph -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y )

Proof

Step Hyp Ref Expression
1 negsproplem.1 Could not format ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
2 negsproplem1.1 φ X No
3 negsproplem1.2 φ Y No
4 negsproplem1.3 φ bday X bday Y bday A bday B
5 2 3 jca φ X No Y No
6 fveq2 x = X bday x = bday X
7 6 uneq1d x = X bday x bday y = bday X bday y
8 7 eleq1d x = X bday x bday y bday A bday B bday X bday y bday A bday B
9 fveq2 Could not format ( x = X -> ( -us ` x ) = ( -us ` X ) ) : No typesetting found for |- ( x = X -> ( -us ` x ) = ( -us ` X ) ) with typecode |-
10 9 eleq1d Could not format ( x = X -> ( ( -us ` x ) e. No <-> ( -us ` X ) e. No ) ) : No typesetting found for |- ( x = X -> ( ( -us ` x ) e. No <-> ( -us ` X ) e. No ) ) with typecode |-
11 breq1 x = X x < s y X < s y
12 9 breq2d Could not format ( x = X -> ( ( -us ` y ) ( -us ` y ) ( ( -us ` y ) ( -us ` y )
13 11 12 imbi12d Could not format ( x = X -> ( ( x ( -us ` y ) ( X ( -us ` y ) ( ( x ( -us ` y ) ( X ( -us ` y )
14 10 13 anbi12d Could not format ( x = X -> ( ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` X ) e. No /\ ( X ( -us ` y )
15 8 14 imbi12d Could not format ( x = X -> ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` y )
16 fveq2 y = Y bday y = bday Y
17 16 uneq2d y = Y bday X bday y = bday X bday Y
18 17 eleq1d y = Y bday X bday y bday A bday B bday X bday Y bday A bday B
19 breq2 y = Y X < s y X < s Y
20 fveq2 Could not format ( y = Y -> ( -us ` y ) = ( -us ` Y ) ) : No typesetting found for |- ( y = Y -> ( -us ` y ) = ( -us ` Y ) ) with typecode |-
21 20 breq1d Could not format ( y = Y -> ( ( -us ` y ) ( -us ` Y ) ( ( -us ` y ) ( -us ` Y )
22 19 21 imbi12d Could not format ( y = Y -> ( ( X ( -us ` y ) ( X ( -us ` Y ) ( ( X ( -us ` y ) ( X ( -us ` Y )
23 22 anbi2d Could not format ( y = Y -> ( ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( -us ` X ) e. No /\ ( X ( -us ` Y ) ( ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( -us ` X ) e. No /\ ( X ( -us ` Y )
24 18 23 imbi12d Could not format ( y = Y -> ( ( ( ( bday ` X ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` Y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y ) ( ( ( ( bday ` X ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` Y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y )
25 15 24 rspc2v Could not format ( ( X e. No /\ Y e. No ) -> ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` Y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y ) ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` X ) u. ( bday ` Y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y )
26 5 1 4 25 syl3c Could not format ( ph -> ( ( -us ` X ) e. No /\ ( X ( -us ` Y ) ( ( -us ` X ) e. No /\ ( X ( -us ` Y )