Metamath Proof Explorer


Theorem negsproplem4

Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when A is simpler than B . (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
negsproplem4.1 φ A No
negsproplem4.2 φ B No
negsproplem4.3 φ A < s B
negsproplem4.4 φ bday A bday B
Assertion negsproplem4 Could not format assertion : No typesetting found for |- ( ph -> ( -us ` B )

Proof

Step Hyp Ref Expression
1 negsproplem.1 Could not format ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
2 negsproplem4.1 φ A No
3 negsproplem4.2 φ B No
4 negsproplem4.3 φ A < s B
5 negsproplem4.4 φ bday A bday B
6 uncom bday A bday B = bday B bday A
7 6 eleq2i bday x bday y bday A bday B bday x bday y bday B bday A
8 7 imbi1i Could not format ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
9 8 2ralbii Could not format ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
10 1 9 sylib Could not format ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
11 10 3 negsproplem3 Could not format ( ph -> ( ( -us ` B ) e. No /\ ( -us " ( _Right ` B ) ) < ( ( -us ` B ) e. No /\ ( -us " ( _Right ` B ) ) <
12 11 simp3d Could not format ( ph -> { ( -us ` B ) } < { ( -us ` B ) } <
13 fvex Could not format ( -us ` B ) e. _V : No typesetting found for |- ( -us ` B ) e. _V with typecode |-
14 13 snid Could not format ( -us ` B ) e. { ( -us ` B ) } : No typesetting found for |- ( -us ` B ) e. { ( -us ` B ) } with typecode |-
15 14 a1i Could not format ( ph -> ( -us ` B ) e. { ( -us ` B ) } ) : No typesetting found for |- ( ph -> ( -us ` B ) e. { ( -us ` B ) } ) with typecode |-
16 negsfn Could not format -us Fn No : No typesetting found for |- -us Fn No with typecode |-
17 leftssno Could not format ( _Left ` B ) C_ No : No typesetting found for |- ( _Left ` B ) C_ No with typecode |-
18 bdayelon bday B On
19 oldbday bday B On A No A Old bday B bday A bday B
20 18 2 19 sylancr φ A Old bday B bday A bday B
21 5 20 mpbird φ A Old bday B
22 breq1 a = A a < s B A < s B
23 leftval Could not format ( _Left ` B ) = { a e. ( _Old ` ( bday ` B ) ) | a
24 22 23 elrab2 Could not format ( A e. ( _Left ` B ) <-> ( A e. ( _Old ` ( bday ` B ) ) /\ A ( A e. ( _Old ` ( bday ` B ) ) /\ A
25 21 4 24 sylanbrc Could not format ( ph -> A e. ( _Left ` B ) ) : No typesetting found for |- ( ph -> A e. ( _Left ` B ) ) with typecode |-
26 fnfvima Could not format ( ( -us Fn No /\ ( _Left ` B ) C_ No /\ A e. ( _Left ` B ) ) -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) : No typesetting found for |- ( ( -us Fn No /\ ( _Left ` B ) C_ No /\ A e. ( _Left ` B ) ) -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) with typecode |-
27 16 17 25 26 mp3an12i Could not format ( ph -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) : No typesetting found for |- ( ph -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) with typecode |-
28 12 15 27 ssltsepcd Could not format ( ph -> ( -us ` B ) ( -us ` B )