Metamath Proof Explorer


Theorem negsproplem7

Description: Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
negsproplem4.1 φ A No
negsproplem4.2 φ B No
negsproplem4.3 φ A < s B
Assertion negsproplem7 Could not format assertion : No typesetting found for |- ( ph -> ( -us ` B )

Proof

Step Hyp Ref Expression
1 negsproplem.1 Could not format ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
2 negsproplem4.1 φ A No
3 negsproplem4.2 φ B No
4 negsproplem4.3 φ A < s B
5 bdayelon bday A On
6 5 onordi Ord bday A
7 bdayelon bday B On
8 7 onordi Ord bday B
9 ordtri3or Ord bday A Ord bday B bday A bday B bday A = bday B bday B bday A
10 6 8 9 mp2an bday A bday B bday A = bday B bday B bday A
11 1 adantr Could not format ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
12 2 adantr φ bday A bday B A No
13 3 adantr φ bday A bday B B No
14 4 adantr φ bday A bday B A < s B
15 simpr φ bday A bday B bday A bday B
16 11 12 13 14 15 negsproplem4 Could not format ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> ( -us ` B ) ( -us ` B )
17 16 ex Could not format ( ph -> ( ( bday ` A ) e. ( bday ` B ) -> ( -us ` B ) ( ( bday ` A ) e. ( bday ` B ) -> ( -us ` B )
18 1 adantr Could not format ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
19 2 adantr φ bday A = bday B A No
20 3 adantr φ bday A = bday B B No
21 4 adantr φ bday A = bday B A < s B
22 simpr φ bday A = bday B bday A = bday B
23 18 19 20 21 22 negsproplem6 Could not format ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> ( -us ` B ) ( -us ` B )
24 23 ex Could not format ( ph -> ( ( bday ` A ) = ( bday ` B ) -> ( -us ` B ) ( ( bday ` A ) = ( bday ` B ) -> ( -us ` B )
25 1 adantr Could not format ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
26 2 adantr φ bday B bday A A No
27 3 adantr φ bday B bday A B No
28 4 adantr φ bday B bday A A < s B
29 simpr φ bday B bday A bday B bday A
30 25 26 27 28 29 negsproplem5 Could not format ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) ( -us ` B )
31 30 ex Could not format ( ph -> ( ( bday ` B ) e. ( bday ` A ) -> ( -us ` B ) ( ( bday ` B ) e. ( bday ` A ) -> ( -us ` B )
32 17 24 31 3jaod Could not format ( ph -> ( ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) ( ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B )
33 10 32 mpi Could not format ( ph -> ( -us ` B ) ( -us ` B )