Step |
Hyp |
Ref |
Expression |
1 |
|
negsproplem.1 |
Could not format ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
|
2 |
|
negsproplem4.1 |
|
3 |
|
negsproplem4.2 |
|
4 |
|
negsproplem4.3 |
|
5 |
|
bdayelon |
|
6 |
5
|
onordi |
|
7 |
|
bdayelon |
|
8 |
7
|
onordi |
|
9 |
|
ordtri3or |
|
10 |
6 8 9
|
mp2an |
|
11 |
1
|
adantr |
Could not format ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
|
12 |
2
|
adantr |
|
13 |
3
|
adantr |
|
14 |
4
|
adantr |
|
15 |
|
simpr |
|
16 |
11 12 13 14 15
|
negsproplem4 |
Could not format ( ( ph /\ ( bday ` A ) e. ( bday ` B ) ) -> ( -us ` B ) ( -us ` B )
|
17 |
16
|
ex |
Could not format ( ph -> ( ( bday ` A ) e. ( bday ` B ) -> ( -us ` B ) ( ( bday ` A ) e. ( bday ` B ) -> ( -us ` B )
|
18 |
1
|
adantr |
Could not format ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
|
19 |
2
|
adantr |
|
20 |
3
|
adantr |
|
21 |
4
|
adantr |
|
22 |
|
simpr |
|
23 |
18 19 20 21 22
|
negsproplem6 |
Could not format ( ( ph /\ ( bday ` A ) = ( bday ` B ) ) -> ( -us ` B ) ( -us ` B )
|
24 |
23
|
ex |
Could not format ( ph -> ( ( bday ` A ) = ( bday ` B ) -> ( -us ` B ) ( ( bday ` A ) = ( bday ` B ) -> ( -us ` B )
|
25 |
1
|
adantr |
Could not format ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
|
26 |
2
|
adantr |
|
27 |
3
|
adantr |
|
28 |
4
|
adantr |
|
29 |
|
simpr |
|
30 |
25 26 27 28 29
|
negsproplem5 |
Could not format ( ( ph /\ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) ( -us ` B )
|
31 |
30
|
ex |
Could not format ( ph -> ( ( bday ` B ) e. ( bday ` A ) -> ( -us ` B ) ( ( bday ` B ) e. ( bday ` A ) -> ( -us ` B )
|
32 |
17 24 31
|
3jaod |
Could not format ( ph -> ( ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B ) ( ( ( bday ` A ) e. ( bday ` B ) \/ ( bday ` A ) = ( bday ` B ) \/ ( bday ` B ) e. ( bday ` A ) ) -> ( -us ` B )
|
33 |
10 32
|
mpi |
Could not format ( ph -> ( -us ` B ) ( -us ` B )
|