Metamath Proof Explorer


Theorem negsubdi2

Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999)

Ref Expression
Assertion negsubdi2 A B A B = B A

Proof

Step Hyp Ref Expression
1 negsubdi A B A B = - A + B
2 negcl A A
3 addcom A B - A + B = B + A
4 2 3 sylan A B - A + B = B + A
5 negsub B A B + A = B A
6 5 ancoms A B B + A = B A
7 1 4 6 3eqtrd A B A B = B A