Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negsubdi2
Next ⟩
neg2sub
Metamath Proof Explorer
Ascii
Unicode
Theorem
negsubdi2
Description:
Distribution of negative over subtraction.
(Contributed by
NM
, 4-Oct-1999)
Ref
Expression
Assertion
negsubdi2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
=
B
−
A
Proof
Step
Hyp
Ref
Expression
1
negsubdi
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
=
-
A
+
B
2
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
3
addcom
⊢
−
A
∈
ℂ
∧
B
∈
ℂ
→
-
A
+
B
=
B
+
−
A
4
2
3
sylan
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
-
A
+
B
=
B
+
−
A
5
negsub
⊢
B
∈
ℂ
∧
A
∈
ℂ
→
B
+
−
A
=
B
−
A
6
5
ancoms
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
+
−
A
=
B
−
A
7
1
4
6
3eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
=
B
−
A