Metamath Proof Explorer


Theorem negsubdi2i

Description: Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999)

Ref Expression
Hypotheses negidi.1 A
pncan3i.2 B
Assertion negsubdi2i A B = B A

Proof

Step Hyp Ref Expression
1 negidi.1 A
2 pncan3i.2 B
3 1 2 negsubdii A B = - A + B
4 1 negcli A
5 2 1 negsubi B + A = B A
6 2 4 5 addcomli - A + B = B A
7 3 6 eqtri A B = B A