Metamath Proof Explorer


Theorem negsubdi3d

Description: Distribution of negative over subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses negsubdi3d.1 φ A
negsubdi3d.2 φ B
Assertion negsubdi3d φ A B = - A - B

Proof

Step Hyp Ref Expression
1 negsubdi3d.1 φ A
2 negsubdi3d.2 φ B
3 1 2 negsubdi2d φ A B = B A
4 1 2 neg2subd φ - A - B = B A
5 3 4 eqtr4d φ A B = - A - B