Metamath Proof Explorer


Theorem negsubdid

Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
Assertion negsubdid φ A B = - A + B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 negsubdi A B A B = - A + B
4 1 2 3 syl2anc φ A B = - A + B