Metamath Proof Explorer


Theorem negsubdii

Description: Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999)

Ref Expression
Hypotheses negidi.1 A
pncan3i.2 B
Assertion negsubdii A B = - A + B

Proof

Step Hyp Ref Expression
1 negidi.1 A
2 pncan3i.2 B
3 2 negcli B
4 1 3 negdii A + B = - A + B
5 1 2 negsubi A + B = A B
6 5 negeqi A + B = A B
7 2 negnegi B = B
8 7 oveq2i - A + B = - A + B
9 4 6 8 3eqtr3i A B = - A + B