Metamath Proof Explorer


Theorem negsval

Description: The value of the surreal negation function. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion negsval A No + s A = + s R A | s + s L A

Proof

Step Hyp Ref Expression
1 df-negs + s = norec s #A# x V , n V n R x | s n L x
2 1 norecov A No + s A = A x V , n V n R x | s n L x + s L A R A
3 elex A No A V
4 negsfn + s Fn No
5 fnfun + s Fn No Fun + s
6 4 5 ax-mp Fun + s
7 fvex L A V
8 fvex R A V
9 7 8 unex L A R A V
10 resfunexg Fun + s L A R A V + s L A R A V
11 6 9 10 mp2an + s L A R A V
12 11 a1i A No + s L A R A V
13 ovexd A No + s L A R A R A | s + s L A R A L A V
14 fveq2 x = A R x = R A
15 14 imaeq2d x = A n R x = n R A
16 fveq2 x = A L x = L A
17 16 imaeq2d x = A n L x = n L A
18 15 17 oveq12d x = A n R x | s n L x = n R A | s n L A
19 imaeq1 n = + s L A R A n R A = + s L A R A R A
20 imaeq1 n = + s L A R A n L A = + s L A R A L A
21 19 20 oveq12d n = + s L A R A n R A | s n L A = + s L A R A R A | s + s L A R A L A
22 eqid x V , n V n R x | s n L x = x V , n V n R x | s n L x
23 18 21 22 ovmpog A V + s L A R A V + s L A R A R A | s + s L A R A L A V A x V , n V n R x | s n L x + s L A R A = + s L A R A R A | s + s L A R A L A
24 3 12 13 23 syl3anc A No A x V , n V n R x | s n L x + s L A R A = + s L A R A R A | s + s L A R A L A
25 ssun2 R A L A R A
26 resima2 R A L A R A + s L A R A R A = + s R A
27 25 26 ax-mp + s L A R A R A = + s R A
28 ssun1 L A L A R A
29 resima2 L A L A R A + s L A R A L A = + s L A
30 28 29 ax-mp + s L A R A L A = + s L A
31 27 30 oveq12i + s L A R A R A | s + s L A R A L A = + s R A | s + s L A
32 31 a1i A No + s L A R A R A | s + s L A R A L A = + s R A | s + s L A
33 2 24 32 3eqtrd A No + s A = + s R A | s + s L A