Metamath Proof Explorer


Theorem negsval2d

Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypothesis negsval2d.1 φ A No
Assertion negsval2d φ + s A = 0 s - s A

Proof

Step Hyp Ref Expression
1 negsval2d.1 φ A No
2 negsval2 A No + s A = 0 s - s A
3 1 2 syl φ + s A = 0 s - s A