Metamath Proof Explorer


Theorem nehash2

Description: The cardinality of a set with two distinct elements. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses nehash2.p φ P V
nehash2.a φ A P
nehash2.b φ B P
nehash2.1 φ A B
Assertion nehash2 φ 2 P

Proof

Step Hyp Ref Expression
1 nehash2.p φ P V
2 nehash2.a φ A P
3 nehash2.b φ B P
4 nehash2.1 φ A B
5 hashprg A P B P A B A B = 2
6 2 3 5 syl2anc φ A B A B = 2
7 4 6 mpbid φ A B = 2
8 2 3 prssd φ A B P
9 hashss P V A B P A B P
10 1 8 9 syl2anc φ A B P
11 7 10 eqbrtrrd φ 2 P