Metamath Proof Explorer


Theorem neiflim

Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion neiflim J TopOn X A X A J fLim nei J A

Proof

Step Hyp Ref Expression
1 ssid nei J A nei J A
2 1 jctr A X A X nei J A nei J A
3 2 adantl J TopOn X A X A X nei J A nei J A
4 simpl J TopOn X A X J TopOn X
5 snssi A X A X
6 5 adantl J TopOn X A X A X
7 snnzg A X A
8 7 adantl J TopOn X A X A
9 neifil J TopOn X A X A nei J A Fil X
10 4 6 8 9 syl3anc J TopOn X A X nei J A Fil X
11 elflim J TopOn X nei J A Fil X A J fLim nei J A A X nei J A nei J A
12 10 11 syldan J TopOn X A X A J fLim nei J A A X nei J A nei J A
13 3 12 mpbird J TopOn X A X A J fLim nei J A