Metamath Proof Explorer


Theorem neiint

Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis neifval.1 X = J
Assertion neiint J Top S X N X N nei J S S int J N

Proof

Step Hyp Ref Expression
1 neifval.1 X = J
2 1 isnei J Top S X N nei J S N X v J S v v N
3 2 3adant3 J Top S X N X N nei J S N X v J S v v N
4 3 3anibar J Top S X N X N nei J S v J S v v N
5 simprrl J Top S X N X v J S v v N S v
6 1 ssntr J Top N X v J v N v int J N
7 6 3adantl2 J Top S X N X v J v N v int J N
8 7 adantrrl J Top S X N X v J S v v N v int J N
9 5 8 sstrd J Top S X N X v J S v v N S int J N
10 9 rexlimdvaa J Top S X N X v J S v v N S int J N
11 simpl1 J Top S X N X S int J N J Top
12 simpl3 J Top S X N X S int J N N X
13 1 ntropn J Top N X int J N J
14 11 12 13 syl2anc J Top S X N X S int J N int J N J
15 simpr J Top S X N X S int J N S int J N
16 1 ntrss2 J Top N X int J N N
17 11 12 16 syl2anc J Top S X N X S int J N int J N N
18 sseq2 v = int J N S v S int J N
19 sseq1 v = int J N v N int J N N
20 18 19 anbi12d v = int J N S v v N S int J N int J N N
21 20 rspcev int J N J S int J N int J N N v J S v v N
22 14 15 17 21 syl12anc J Top S X N X S int J N v J S v v N
23 22 ex J Top S X N X S int J N v J S v v N
24 10 23 impbid J Top S X N X v J S v v N S int J N
25 4 24 bitrd J Top S X N X N nei J S S int J N