Metamath Proof Explorer


Theorem neindisj2

Description: A point P belongs to the closure of a set S iff every neighborhood of P meets S . (Contributed by FL, 15-Sep-2013)

Ref Expression
Hypothesis tpnei.1 X = J
Assertion neindisj2 J Top S X P X P cls J S n nei J P n S

Proof

Step Hyp Ref Expression
1 tpnei.1 X = J
2 1 elcls J Top S X P X P cls J S x J P x x S
3 1 isneip J Top P X n nei J P n X x J P x x n
4 r19.29r x J P x x n x J P x x S x J P x x n P x x S
5 pm3.35 P x P x x S x S
6 ssrin x n x S n S
7 sseq2 n S = x S n S x S
8 ss0 x S x S =
9 7 8 syl6bi n S = x S n S x S =
10 6 9 syl5com x n n S = x S =
11 10 necon3d x n x S n S
12 5 11 syl5com P x P x x S x n n S
13 12 ex P x P x x S x n n S
14 13 com23 P x x n P x x S n S
15 14 imp31 P x x n P x x S n S
16 15 rexlimivw x J P x x n P x x S n S
17 4 16 syl x J P x x n x J P x x S n S
18 17 ex x J P x x n x J P x x S n S
19 18 adantl n X x J P x x n x J P x x S n S
20 3 19 syl6bi J Top P X n nei J P x J P x x S n S
21 20 3adant2 J Top S X P X n nei J P x J P x x S n S
22 21 com23 J Top S X P X x J P x x S n nei J P n S
23 22 imp J Top S X P X x J P x x S n nei J P n S
24 23 ralrimiv J Top S X P X x J P x x S n nei J P n S
25 opnneip J Top x J P x x nei J P
26 ineq1 n = x n S = x S
27 26 neeq1d n = x n S x S
28 27 rspccva n nei J P n S x nei J P x S
29 idd P X J Top x J P x S X x S x S
30 29 3exp P X J Top x J P x S X x S x S
31 30 com14 x S J Top x J P x S X P X x S
32 28 31 syl n nei J P n S x nei J P J Top x J P x S X P X x S
33 32 ex n nei J P n S x nei J P J Top x J P x S X P X x S
34 33 com3l x nei J P J Top x J P x n nei J P n S S X P X x S
35 25 34 mpcom J Top x J P x n nei J P n S S X P X x S
36 35 3expia J Top x J P x n nei J P n S S X P X x S
37 36 com25 J Top x J P X n nei J P n S S X P x x S
38 37 ex J Top x J P X n nei J P n S S X P x x S
39 38 com25 J Top S X P X n nei J P n S x J P x x S
40 39 3imp1 J Top S X P X n nei J P n S x J P x x S
41 40 ralrimiv J Top S X P X n nei J P n S x J P x x S
42 24 41 impbida J Top S X P X x J P x x S n nei J P n S
43 2 42 bitrd J Top S X P X P cls J S n nei J P n S