Metamath Proof Explorer


Theorem neipcfilu

Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Hypotheses neipcfilu.x X = Base W
neipcfilu.j J = TopOpen W
neipcfilu.u U = UnifSt W
Assertion neipcfilu W UnifSp W TopSp P X nei J P CauFilU U

Proof

Step Hyp Ref Expression
1 neipcfilu.x X = Base W
2 neipcfilu.j J = TopOpen W
3 neipcfilu.u U = UnifSt W
4 simp2 W UnifSp W TopSp P X W TopSp
5 1 2 istps W TopSp J TopOn X
6 4 5 sylib W UnifSp W TopSp P X J TopOn X
7 simp3 W UnifSp W TopSp P X P X
8 7 snssd W UnifSp W TopSp P X P X
9 snnzg P X P
10 7 9 syl W UnifSp W TopSp P X P
11 neifil J TopOn X P X P nei J P Fil X
12 6 8 10 11 syl3anc W UnifSp W TopSp P X nei J P Fil X
13 filfbas nei J P Fil X nei J P fBas X
14 12 13 syl W UnifSp W TopSp P X nei J P fBas X
15 eqid w P = w P
16 imaeq1 v = w v P = w P
17 16 rspceeqv w U w P = w P v U w P = v P
18 15 17 mpan2 w U v U w P = v P
19 vex w V
20 19 imaex w P V
21 eqid v U v P = v U v P
22 21 elrnmpt w P V w P ran v U v P v U w P = v P
23 20 22 ax-mp w P ran v U v P v U w P = v P
24 18 23 sylibr w U w P ran v U v P
25 24 ad2antlr W UnifSp W TopSp P X v U w U w P × w P v w P ran v U v P
26 1 3 2 isusp W UnifSp U UnifOn X J = unifTop U
27 26 simplbi W UnifSp U UnifOn X
28 27 3ad2ant1 W UnifSp W TopSp P X U UnifOn X
29 eqid unifTop U = unifTop U
30 29 utopsnneip U UnifOn X P X nei unifTop U P = ran v U v P
31 28 7 30 syl2anc W UnifSp W TopSp P X nei unifTop U P = ran v U v P
32 31 eleq2d W UnifSp W TopSp P X w P nei unifTop U P w P ran v U v P
33 32 ad3antrrr W UnifSp W TopSp P X v U w U w P × w P v w P nei unifTop U P w P ran v U v P
34 25 33 mpbird W UnifSp W TopSp P X v U w U w P × w P v w P nei unifTop U P
35 simpl1 W UnifSp W TopSp P X v U w U w P × w P v W UnifSp
36 35 3anassrs W UnifSp W TopSp P X v U w U w P × w P v W UnifSp
37 26 simprbi W UnifSp J = unifTop U
38 36 37 syl W UnifSp W TopSp P X v U w U w P × w P v J = unifTop U
39 38 fveq2d W UnifSp W TopSp P X v U w U w P × w P v nei J = nei unifTop U
40 39 fveq1d W UnifSp W TopSp P X v U w U w P × w P v nei J P = nei unifTop U P
41 34 40 eleqtrrd W UnifSp W TopSp P X v U w U w P × w P v w P nei J P
42 simpr W UnifSp W TopSp P X v U w U w P × w P v w P × w P v
43 id a = w P a = w P
44 43 sqxpeqd a = w P a × a = w P × w P
45 44 sseq1d a = w P a × a v w P × w P v
46 45 rspcev w P nei J P w P × w P v a nei J P a × a v
47 41 42 46 syl2anc W UnifSp W TopSp P X v U w U w P × w P v a nei J P a × a v
48 28 adantr W UnifSp W TopSp P X v U U UnifOn X
49 7 adantr W UnifSp W TopSp P X v U P X
50 simpr W UnifSp W TopSp P X v U v U
51 simpll1 U UnifOn X P X v U u U u u v U UnifOn X
52 simplr U UnifOn X P X v U u U u u v u U
53 ustexsym U UnifOn X u U w U w -1 = w w u
54 51 52 53 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u
55 51 ad2antrr U UnifOn X P X v U u U u u v w U w -1 = w w u U UnifOn X
56 simplr U UnifOn X P X v U u U u u v w U w -1 = w w u w U
57 ustssxp U UnifOn X w U w X × X
58 55 56 57 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u w X × X
59 simpll2 U UnifOn X P X v U u U u u v w U w -1 = w w u P X
60 59 3anassrs U UnifOn X P X v U u U u u v w U w -1 = w w u P X
61 ustneism w X × X P X w P × w P w w -1
62 58 60 61 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P w w -1
63 simprl U UnifOn X P X v U u U u u v w U w -1 = w w u w -1 = w
64 63 coeq2d U UnifOn X P X v U u U u u v w U w -1 = w w u w w -1 = w w
65 coss1 w u w w u w
66 coss2 w u u w u u
67 65 66 sstrd w u w w u u
68 67 ad2antll U UnifOn X P X v U u U u u v w U w -1 = w w u w w u u
69 simpllr U UnifOn X P X v U u U u u v w U w -1 = w w u u u v
70 68 69 sstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w w v
71 64 70 eqsstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w w -1 v
72 62 71 sstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P v
73 72 ex U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P v
74 73 reximdva U UnifOn X P X v U u U u u v w U w -1 = w w u w U w P × w P v
75 54 74 mpd U UnifOn X P X v U u U u u v w U w P × w P v
76 ustexhalf U UnifOn X v U u U u u v
77 76 3adant2 U UnifOn X P X v U u U u u v
78 75 77 r19.29a U UnifOn X P X v U w U w P × w P v
79 48 49 50 78 syl3anc W UnifSp W TopSp P X v U w U w P × w P v
80 47 79 r19.29a W UnifSp W TopSp P X v U a nei J P a × a v
81 80 ralrimiva W UnifSp W TopSp P X v U a nei J P a × a v
82 iscfilu U UnifOn X nei J P CauFilU U nei J P fBas X v U a nei J P a × a v
83 28 82 syl W UnifSp W TopSp P X nei J P CauFilU U nei J P fBas X v U a nei J P a × a v
84 14 81 83 mpbir2and W UnifSp W TopSp P X nei J P CauFilU U