Database
BASIC TOPOLOGY
Topology
Neighborhoods
neipeltop
Next ⟩
neiptopuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
neipeltop
Description:
Lemma for
neiptopreu
.
(Contributed by
Thierry Arnoux
, 6-Jan-2018)
Ref
Expression
Hypothesis
neiptop.o
⊢
J
=
a
∈
𝒫
X
|
∀
p
∈
a
a
∈
N
⁡
p
Assertion
neipeltop
⊢
C
∈
J
↔
C
⊆
X
∧
∀
p
∈
C
C
∈
N
⁡
p
Proof
Step
Hyp
Ref
Expression
1
neiptop.o
⊢
J
=
a
∈
𝒫
X
|
∀
p
∈
a
a
∈
N
⁡
p
2
eleq1
⊢
a
=
C
→
a
∈
N
⁡
p
↔
C
∈
N
⁡
p
3
2
raleqbi1dv
⊢
a
=
C
→
∀
p
∈
a
a
∈
N
⁡
p
↔
∀
p
∈
C
C
∈
N
⁡
p
4
3
1
elrab2
⊢
C
∈
J
↔
C
∈
𝒫
X
∧
∀
p
∈
C
C
∈
N
⁡
p
5
0ex
⊢
∅
∈
V
6
eleq1
⊢
C
=
∅
→
C
∈
V
↔
∅
∈
V
7
5
6
mpbiri
⊢
C
=
∅
→
C
∈
V
8
7
adantl
⊢
∀
p
∈
C
C
∈
N
⁡
p
∧
C
=
∅
→
C
∈
V
9
elex
⊢
C
∈
N
⁡
p
→
C
∈
V
10
9
ralimi
⊢
∀
p
∈
C
C
∈
N
⁡
p
→
∀
p
∈
C
C
∈
V
11
r19.3rzv
⊢
C
≠
∅
→
C
∈
V
↔
∀
p
∈
C
C
∈
V
12
11
biimparc
⊢
∀
p
∈
C
C
∈
V
∧
C
≠
∅
→
C
∈
V
13
10
12
sylan
⊢
∀
p
∈
C
C
∈
N
⁡
p
∧
C
≠
∅
→
C
∈
V
14
8
13
pm2.61dane
⊢
∀
p
∈
C
C
∈
N
⁡
p
→
C
∈
V
15
elpwg
⊢
C
∈
V
→
C
∈
𝒫
X
↔
C
⊆
X
16
14
15
syl
⊢
∀
p
∈
C
C
∈
N
⁡
p
→
C
∈
𝒫
X
↔
C
⊆
X
17
16
pm5.32ri
⊢
C
∈
𝒫
X
∧
∀
p
∈
C
C
∈
N
⁡
p
↔
C
⊆
X
∧
∀
p
∈
C
C
∈
N
⁡
p
18
4
17
bitri
⊢
C
∈
J
↔
C
⊆
X
∧
∀
p
∈
C
C
∈
N
⁡
p