Metamath Proof Explorer


Theorem neipeltop

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypothesis neiptop.o J = a 𝒫 X | p a a N p
Assertion neipeltop C J C X p C C N p

Proof

Step Hyp Ref Expression
1 neiptop.o J = a 𝒫 X | p a a N p
2 eleq1 a = C a N p C N p
3 2 raleqbi1dv a = C p a a N p p C C N p
4 3 1 elrab2 C J C 𝒫 X p C C N p
5 0ex V
6 eleq1 C = C V V
7 5 6 mpbiri C = C V
8 7 adantl p C C N p C = C V
9 elex C N p C V
10 9 ralimi p C C N p p C C V
11 r19.3rzv C C V p C C V
12 11 biimparc p C C V C C V
13 10 12 sylan p C C N p C C V
14 8 13 pm2.61dane p C C N p C V
15 elpwg C V C 𝒫 X C X
16 14 15 syl p C C N p C 𝒫 X C X
17 16 pm5.32ri C 𝒫 X p C C N p C X p C C N p
18 4 17 bitri C J C X p C C N p