Metamath Proof Explorer


Theorem neips

Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of BourbakiTop1 p. I.2. (Contributed by FL, 16-Nov-2006)

Ref Expression
Hypothesis neips.1 X = J
Assertion neips J Top S X S N nei J S p S N nei J p

Proof

Step Hyp Ref Expression
1 neips.1 X = J
2 snssi p S p S
3 neiss J Top N nei J S p S N nei J p
4 2 3 syl3an3 J Top N nei J S p S N nei J p
5 4 3exp J Top N nei J S p S N nei J p
6 5 ralrimdv J Top N nei J S p S N nei J p
7 6 3ad2ant1 J Top S X S N nei J S p S N nei J p
8 r19.28zv S p S N X g J p g g N N X p S g J p g g N
9 8 3ad2ant3 J Top S X S p S N X g J p g g N N X p S g J p g g N
10 ssrab2 v J | v N J
11 uniopn J Top v J | v N J v J | v N J
12 10 11 mpan2 J Top v J | v N J
13 12 ad2antrr J Top S X p S g J p g g N v J | v N J
14 sseq1 v = g v N g N
15 14 elrab g v J | v N g J g N
16 elunii p g g v J | v N p v J | v N
17 15 16 sylan2br p g g J g N p v J | v N
18 17 an12s g J p g g N p v J | v N
19 18 rexlimiva g J p g g N p v J | v N
20 19 ralimi p S g J p g g N p S p v J | v N
21 dfss3 S v J | v N p S p v J | v N
22 20 21 sylibr p S g J p g g N S v J | v N
23 22 adantl J Top S X p S g J p g g N S v J | v N
24 unissb v J | v N N h v J | v N h N
25 sseq1 v = h v N h N
26 25 elrab h v J | v N h J h N
27 26 simprbi h v J | v N h N
28 24 27 mprgbir v J | v N N
29 23 28 jctir J Top S X p S g J p g g N S v J | v N v J | v N N
30 sseq2 h = v J | v N S h S v J | v N
31 sseq1 h = v J | v N h N v J | v N N
32 30 31 anbi12d h = v J | v N S h h N S v J | v N v J | v N N
33 32 rspcev v J | v N J S v J | v N v J | v N N h J S h h N
34 13 29 33 syl2anc J Top S X p S g J p g g N h J S h h N
35 34 ex J Top S X p S g J p g g N h J S h h N
36 35 anim2d J Top S X N X p S g J p g g N N X h J S h h N
37 36 3adant3 J Top S X S N X p S g J p g g N N X h J S h h N
38 9 37 sylbid J Top S X S p S N X g J p g g N N X h J S h h N
39 ssel2 S X p S p X
40 1 isneip J Top p X N nei J p N X g J p g g N
41 39 40 sylan2 J Top S X p S N nei J p N X g J p g g N
42 41 anassrs J Top S X p S N nei J p N X g J p g g N
43 42 ralbidva J Top S X p S N nei J p p S N X g J p g g N
44 43 3adant3 J Top S X S p S N nei J p p S N X g J p g g N
45 1 isnei J Top S X N nei J S N X h J S h h N
46 45 3adant3 J Top S X S N nei J S N X h J S h h N
47 38 44 46 3imtr4d J Top S X S p S N nei J p N nei J S
48 7 47 impbid J Top S X S N nei J S p S N nei J p