Step |
Hyp |
Ref |
Expression |
1 |
|
neiptop.o |
|
2 |
|
neiptop.0 |
|
3 |
|
neiptop.1 |
|
4 |
|
neiptop.2 |
|
5 |
|
neiptop.3 |
|
6 |
|
neiptop.4 |
|
7 |
|
neiptop.5 |
|
8 |
2
|
feqmptd |
|
9 |
2
|
ffvelrnda |
|
10 |
9
|
adantr |
|
11 |
10
|
elpwid |
|
12 |
|
simpr |
|
13 |
11 12
|
sseldd |
|
14 |
13
|
elpwid |
|
15 |
1 2 3 4 5 6 7
|
neiptopuni |
|
16 |
15
|
adantr |
|
17 |
16
|
adantr |
|
18 |
14 17
|
sseqtrd |
|
19 |
|
ssrab2 |
|
20 |
19
|
a1i |
|
21 |
|
fveq2 |
|
22 |
21
|
eleq2d |
|
23 |
22
|
elrab |
|
24 |
|
simp-5l |
|
25 |
|
simpr1l |
|
26 |
25
|
3anassrs |
|
27 |
|
simpr |
|
28 |
|
simplr |
|
29 |
|
sseq1 |
|
30 |
29
|
3anbi2d |
|
31 |
|
eleq1w |
|
32 |
30 31
|
anbi12d |
|
33 |
32
|
imbi1d |
|
34 |
|
simpl1l |
|
35 |
1 2 3 4 5 6 7
|
neiptoptop |
|
36 |
35
|
uniexd |
|
37 |
15 36
|
eqeltrd |
|
38 |
|
rabexg |
|
39 |
|
sseq2 |
|
40 |
|
sseq1 |
|
41 |
39 40
|
3anbi23d |
|
42 |
41
|
anbi1d |
|
43 |
|
eleq1 |
|
44 |
42 43
|
imbi12d |
|
45 |
|
eleq1w |
|
46 |
45
|
anbi2d |
|
47 |
46
|
3anbi1d |
|
48 |
|
fveq2 |
|
49 |
48
|
eleq2d |
|
50 |
47 49
|
anbi12d |
|
51 |
48
|
eleq2d |
|
52 |
50 51
|
imbi12d |
|
53 |
52 3
|
chvarvv |
|
54 |
44 53
|
vtoclg |
|
55 |
37 38 54
|
3syl |
|
56 |
34 55
|
mpcom |
|
57 |
33 56
|
chvarvv |
|
58 |
57
|
3an1rs |
|
59 |
19 58
|
mpan2 |
|
60 |
24 26 27 28 59
|
syl211anc |
|
61 |
|
simplll |
|
62 |
|
simprl |
|
63 |
|
simprr |
|
64 |
48
|
eleq2d |
|
65 |
46 64
|
anbi12d |
|
66 |
|
fveq2 |
|
67 |
66
|
eleq2d |
|
68 |
67
|
cbvralvw |
|
69 |
68
|
a1i |
|
70 |
48 69
|
rexeqbidv |
|
71 |
65 70
|
imbi12d |
|
72 |
|
eleq1w |
|
73 |
72
|
anbi2d |
|
74 |
|
eleq1w |
|
75 |
74
|
rexralbidv |
|
76 |
73 75
|
imbi12d |
|
77 |
76 6
|
chvarvv |
|
78 |
71 77
|
chvarvv |
|
79 |
2
|
ffvelrnda |
|
80 |
79
|
elpwid |
|
81 |
80
|
sselda |
|
82 |
81
|
elpwid |
|
83 |
82
|
sselda |
|
84 |
83
|
a1d |
|
85 |
84
|
ancrd |
|
86 |
85
|
ralimdva |
|
87 |
86
|
reximdva |
|
88 |
87
|
adantr |
|
89 |
78 88
|
mpd |
|
90 |
67
|
elrab |
|
91 |
90
|
ralbii |
|
92 |
91
|
rexbii |
|
93 |
89 92
|
sylibr |
|
94 |
|
dfss3 |
|
95 |
94
|
biimpri |
|
96 |
95
|
reximi |
|
97 |
93 96
|
syl |
|
98 |
61 62 63 97
|
syl21anc |
|
99 |
60 98
|
r19.29a |
|
100 |
23 99
|
sylan2b |
|
101 |
100
|
ralrimiva |
|
102 |
48
|
eleq2d |
|
103 |
102
|
cbvralvw |
|
104 |
101 103
|
sylibr |
|
105 |
1
|
neipeltop |
|
106 |
20 104 105
|
sylanbrc |
|
107 |
|
simpr |
|
108 |
107
|
anim1i |
|
109 |
|
fveq2 |
|
110 |
109
|
eleq2d |
|
111 |
110
|
elrab |
|
112 |
108 111
|
sylibr |
|
113 |
|
nfv |
|
114 |
|
nfrab1 |
|
115 |
|
nfcv |
|
116 |
|
rabid |
|
117 |
|
simplll |
|
118 |
|
simprl |
|
119 |
|
simprr |
|
120 |
|
eleq1w |
|
121 |
120
|
anbi2d |
|
122 |
|
fveq2 |
|
123 |
122
|
eleq2d |
|
124 |
121 123
|
anbi12d |
|
125 |
|
elequ1 |
|
126 |
124 125
|
imbi12d |
|
127 |
|
elequ2 |
|
128 |
73 127
|
imbi12d |
|
129 |
128 5
|
chvarvv |
|
130 |
126 129
|
chvarvv |
|
131 |
117 118 119 130
|
syl21anc |
|
132 |
131
|
ex |
|
133 |
116 132
|
syl5bi |
|
134 |
113 114 115 133
|
ssrd |
|
135 |
|
eleq2 |
|
136 |
|
sseq1 |
|
137 |
135 136
|
anbi12d |
|
138 |
137
|
rspcev |
|
139 |
106 112 134 138
|
syl12anc |
|
140 |
18 139
|
jca |
|
141 |
|
nfv |
|
142 |
|
nfv |
|
143 |
|
nfre1 |
|
144 |
142 143
|
nfan |
|
145 |
141 144
|
nfan |
|
146 |
|
simplll |
|
147 |
|
simpr |
|
148 |
|
simpr1l |
|
149 |
148
|
3anassrs |
|
150 |
146 16
|
syl |
|
151 |
149 150
|
sseqtrrd |
|
152 |
|
simplr |
|
153 |
|
sseq1 |
|
154 |
153
|
3anbi2d |
|
155 |
|
eleq1w |
|
156 |
154 155
|
anbi12d |
|
157 |
156
|
imbi1d |
|
158 |
|
sseq2 |
|
159 |
|
sseq1 |
|
160 |
158 159
|
3anbi23d |
|
161 |
160
|
anbi1d |
|
162 |
|
eleq1w |
|
163 |
161 162
|
imbi12d |
|
164 |
163 3
|
chvarvv |
|
165 |
157 164
|
chvarvv |
|
166 |
146 147 151 152 165
|
syl31anc |
|
167 |
1
|
neipeltop |
|
168 |
167
|
simprbi |
|
169 |
168
|
r19.21bi |
|
170 |
169
|
anim1i |
|
171 |
170
|
anasss |
|
172 |
171
|
reximi2 |
|
173 |
172
|
ad2antll |
|
174 |
145 166 173
|
r19.29af |
|
175 |
140 174
|
impbida |
|
176 |
107 16
|
eleqtrd |
|
177 |
|
eqid |
|
178 |
177
|
isneip |
|
179 |
35 176 178
|
syl2an2r |
|
180 |
175 179
|
bitr4d |
|
181 |
180
|
eqrdv |
|
182 |
181
|
mpteq2dva |
|
183 |
8 182
|
eqtrd |
|