Metamath Proof Explorer


Theorem neiptopnei

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 7-Jan-2018)

Ref Expression
Hypotheses neiptop.o J = a 𝒫 X | p a a N p
neiptop.0 φ N : X 𝒫 𝒫 X
neiptop.1 φ p X a b b X a N p b N p
neiptop.2 φ p X fi N p N p
neiptop.3 φ p X a N p p a
neiptop.4 φ p X a N p b N p q b a N q
neiptop.5 φ p X X N p
Assertion neiptopnei φ N = p X nei J p

Proof

Step Hyp Ref Expression
1 neiptop.o J = a 𝒫 X | p a a N p
2 neiptop.0 φ N : X 𝒫 𝒫 X
3 neiptop.1 φ p X a b b X a N p b N p
4 neiptop.2 φ p X fi N p N p
5 neiptop.3 φ p X a N p p a
6 neiptop.4 φ p X a N p b N p q b a N q
7 neiptop.5 φ p X X N p
8 2 feqmptd φ N = p X N p
9 2 ffvelrnda φ p X N p 𝒫 𝒫 X
10 9 adantr φ p X c N p N p 𝒫 𝒫 X
11 10 elpwid φ p X c N p N p 𝒫 X
12 simpr φ p X c N p c N p
13 11 12 sseldd φ p X c N p c 𝒫 X
14 13 elpwid φ p X c N p c X
15 1 2 3 4 5 6 7 neiptopuni φ X = J
16 15 adantr φ p X X = J
17 16 adantr φ p X c N p X = J
18 14 17 sseqtrd φ p X c N p c J
19 ssrab2 q X | c N q X
20 19 a1i φ p X c N p q X | c N q X
21 fveq2 q = r N q = N r
22 21 eleq2d q = r c N q c N r
23 22 elrab r q X | c N q r X c N r
24 simp-5l φ p X c N p r X c N r b N r b q X | c N q φ
25 simpr1l φ p X c N p r X c N r b N r b q X | c N q r X
26 25 3anassrs φ p X c N p r X c N r b N r b q X | c N q r X
27 simpr φ p X c N p r X c N r b N r b q X | c N q b q X | c N q
28 simplr φ p X c N p r X c N r b N r b q X | c N q b N r
29 sseq1 a = b a q X | c N q b q X | c N q
30 29 3anbi2d a = b φ r X a q X | c N q q X | c N q X φ r X b q X | c N q q X | c N q X
31 eleq1w a = b a N r b N r
32 30 31 anbi12d a = b φ r X a q X | c N q q X | c N q X a N r φ r X b q X | c N q q X | c N q X b N r
33 32 imbi1d a = b φ r X a q X | c N q q X | c N q X a N r q X | c N q N r φ r X b q X | c N q q X | c N q X b N r q X | c N q N r
34 simpl1l φ r X a q X | c N q q X | c N q X a N r φ
35 1 2 3 4 5 6 7 neiptoptop φ J Top
36 35 uniexd φ J V
37 15 36 eqeltrd φ X V
38 rabexg X V q X | c N q V
39 sseq2 b = q X | c N q a b a q X | c N q
40 sseq1 b = q X | c N q b X q X | c N q X
41 39 40 3anbi23d b = q X | c N q φ r X a b b X φ r X a q X | c N q q X | c N q X
42 41 anbi1d b = q X | c N q φ r X a b b X a N r φ r X a q X | c N q q X | c N q X a N r
43 eleq1 b = q X | c N q b N r q X | c N q N r
44 42 43 imbi12d b = q X | c N q φ r X a b b X a N r b N r φ r X a q X | c N q q X | c N q X a N r q X | c N q N r
45 eleq1w p = r p X r X
46 45 anbi2d p = r φ p X φ r X
47 46 3anbi1d p = r φ p X a b b X φ r X a b b X
48 fveq2 p = r N p = N r
49 48 eleq2d p = r a N p a N r
50 47 49 anbi12d p = r φ p X a b b X a N p φ r X a b b X a N r
51 48 eleq2d p = r b N p b N r
52 50 51 imbi12d p = r φ p X a b b X a N p b N p φ r X a b b X a N r b N r
53 52 3 chvarvv φ r X a b b X a N r b N r
54 44 53 vtoclg q X | c N q V φ r X a q X | c N q q X | c N q X a N r q X | c N q N r
55 37 38 54 3syl φ φ r X a q X | c N q q X | c N q X a N r q X | c N q N r
56 34 55 mpcom φ r X a q X | c N q q X | c N q X a N r q X | c N q N r
57 33 56 chvarvv φ r X b q X | c N q q X | c N q X b N r q X | c N q N r
58 57 3an1rs φ r X b q X | c N q b N r q X | c N q X q X | c N q N r
59 19 58 mpan2 φ r X b q X | c N q b N r q X | c N q N r
60 24 26 27 28 59 syl211anc φ p X c N p r X c N r b N r b q X | c N q q X | c N q N r
61 simplll φ p X c N p r X c N r φ
62 simprl φ p X c N p r X c N r r X
63 simprr φ p X c N p r X c N r c N r
64 48 eleq2d p = r c N p c N r
65 46 64 anbi12d p = r φ p X c N p φ r X c N r
66 fveq2 q = s N q = N s
67 66 eleq2d q = s c N q c N s
68 67 cbvralvw q b c N q s b c N s
69 68 a1i p = r q b c N q s b c N s
70 48 69 rexeqbidv p = r b N p q b c N q b N r s b c N s
71 65 70 imbi12d p = r φ p X c N p b N p q b c N q φ r X c N r b N r s b c N s
72 eleq1w a = c a N p c N p
73 72 anbi2d a = c φ p X a N p φ p X c N p
74 eleq1w a = c a N q c N q
75 74 rexralbidv a = c b N p q b a N q b N p q b c N q
76 73 75 imbi12d a = c φ p X a N p b N p q b a N q φ p X c N p b N p q b c N q
77 76 6 chvarvv φ p X c N p b N p q b c N q
78 71 77 chvarvv φ r X c N r b N r s b c N s
79 2 ffvelrnda φ r X N r 𝒫 𝒫 X
80 79 elpwid φ r X N r 𝒫 X
81 80 sselda φ r X b N r b 𝒫 X
82 81 elpwid φ r X b N r b X
83 82 sselda φ r X b N r s b s X
84 83 a1d φ r X b N r s b c N s s X
85 84 ancrd φ r X b N r s b c N s s X c N s
86 85 ralimdva φ r X b N r s b c N s s b s X c N s
87 86 reximdva φ r X b N r s b c N s b N r s b s X c N s
88 87 adantr φ r X c N r b N r s b c N s b N r s b s X c N s
89 78 88 mpd φ r X c N r b N r s b s X c N s
90 67 elrab s q X | c N q s X c N s
91 90 ralbii s b s q X | c N q s b s X c N s
92 91 rexbii b N r s b s q X | c N q b N r s b s X c N s
93 89 92 sylibr φ r X c N r b N r s b s q X | c N q
94 dfss3 b q X | c N q s b s q X | c N q
95 94 biimpri s b s q X | c N q b q X | c N q
96 95 reximi b N r s b s q X | c N q b N r b q X | c N q
97 93 96 syl φ r X c N r b N r b q X | c N q
98 61 62 63 97 syl21anc φ p X c N p r X c N r b N r b q X | c N q
99 60 98 r19.29a φ p X c N p r X c N r q X | c N q N r
100 23 99 sylan2b φ p X c N p r q X | c N q q X | c N q N r
101 100 ralrimiva φ p X c N p r q X | c N q q X | c N q N r
102 48 eleq2d p = r q X | c N q N p q X | c N q N r
103 102 cbvralvw p q X | c N q q X | c N q N p r q X | c N q q X | c N q N r
104 101 103 sylibr φ p X c N p p q X | c N q q X | c N q N p
105 1 neipeltop q X | c N q J q X | c N q X p q X | c N q q X | c N q N p
106 20 104 105 sylanbrc φ p X c N p q X | c N q J
107 simpr φ p X p X
108 107 anim1i φ p X c N p p X c N p
109 fveq2 q = p N q = N p
110 109 eleq2d q = p c N q c N p
111 110 elrab p q X | c N q p X c N p
112 108 111 sylibr φ p X c N p p q X | c N q
113 nfv q φ p X c N p
114 nfrab1 _ q q X | c N q
115 nfcv _ q c
116 rabid q q X | c N q q X c N q
117 simplll φ p X c N p q X c N q φ
118 simprl φ p X c N p q X c N q q X
119 simprr φ p X c N p q X c N q c N q
120 eleq1w p = q p X q X
121 120 anbi2d p = q φ p X φ q X
122 fveq2 p = q N p = N q
123 122 eleq2d p = q c N p c N q
124 121 123 anbi12d p = q φ p X c N p φ q X c N q
125 elequ1 p = q p c q c
126 124 125 imbi12d p = q φ p X c N p p c φ q X c N q q c
127 elequ2 a = c p a p c
128 73 127 imbi12d a = c φ p X a N p p a φ p X c N p p c
129 128 5 chvarvv φ p X c N p p c
130 126 129 chvarvv φ q X c N q q c
131 117 118 119 130 syl21anc φ p X c N p q X c N q q c
132 131 ex φ p X c N p q X c N q q c
133 116 132 syl5bi φ p X c N p q q X | c N q q c
134 113 114 115 133 ssrd φ p X c N p q X | c N q c
135 eleq2 d = q X | c N q p d p q X | c N q
136 sseq1 d = q X | c N q d c q X | c N q c
137 135 136 anbi12d d = q X | c N q p d d c p q X | c N q q X | c N q c
138 137 rspcev q X | c N q J p q X | c N q q X | c N q c d J p d d c
139 106 112 134 138 syl12anc φ p X c N p d J p d d c
140 18 139 jca φ p X c N p c J d J p d d c
141 nfv d φ p X
142 nfv d c J
143 nfre1 d d J p d d c
144 142 143 nfan d c J d J p d d c
145 141 144 nfan d φ p X c J d J p d d c
146 simplll φ p X c J d J p d d c d N p d c φ p X
147 simpr φ p X c J d J p d d c d N p d c d c
148 simpr1l φ p X c J d J p d d c d N p d c c J
149 148 3anassrs φ p X c J d J p d d c d N p d c c J
150 146 16 syl φ p X c J d J p d d c d N p d c X = J
151 149 150 sseqtrrd φ p X c J d J p d d c d N p d c c X
152 simplr φ p X c J d J p d d c d N p d c d N p
153 sseq1 a = d a c d c
154 153 3anbi2d a = d φ p X a c c X φ p X d c c X
155 eleq1w a = d a N p d N p
156 154 155 anbi12d a = d φ p X a c c X a N p φ p X d c c X d N p
157 156 imbi1d a = d φ p X a c c X a N p c N p φ p X d c c X d N p c N p
158 sseq2 b = c a b a c
159 sseq1 b = c b X c X
160 158 159 3anbi23d b = c φ p X a b b X φ p X a c c X
161 160 anbi1d b = c φ p X a b b X a N p φ p X a c c X a N p
162 eleq1w b = c b N p c N p
163 161 162 imbi12d b = c φ p X a b b X a N p b N p φ p X a c c X a N p c N p
164 163 3 chvarvv φ p X a c c X a N p c N p
165 157 164 chvarvv φ p X d c c X d N p c N p
166 146 147 151 152 165 syl31anc φ p X c J d J p d d c d N p d c c N p
167 1 neipeltop d J d X p d d N p
168 167 simprbi d J p d d N p
169 168 r19.21bi d J p d d N p
170 169 anim1i d J p d d c d N p d c
171 170 anasss d J p d d c d N p d c
172 171 reximi2 d J p d d c d N p d c
173 172 ad2antll φ p X c J d J p d d c d N p d c
174 145 166 173 r19.29af φ p X c J d J p d d c c N p
175 140 174 impbida φ p X c N p c J d J p d d c
176 107 16 eleqtrd φ p X p J
177 eqid J = J
178 177 isneip J Top p J c nei J p c J d J p d d c
179 35 176 178 syl2an2r φ p X c nei J p c J d J p d d c
180 175 179 bitr4d φ p X c N p c nei J p
181 180 eqrdv φ p X N p = nei J p
182 181 mpteq2dva φ p X N p = p X nei J p
183 8 182 eqtrd φ N = p X nei J p