Metamath Proof Explorer


Theorem neiptopreu

Description: If, to each element P of a set X , we associate a set ( NP ) fulfilling Properties V_i, V_ii, V_iii and Property V_iv of BourbakiTop1 p. I.2. , corresponding to ssnei , innei , elnei and neissex , then there is a unique topology j such that for any point p , ( Np ) is the set of neighborhoods of p . Proposition 2 of BourbakiTop1 p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei uses binary intersections whereas Property V_ii mentions finite intersections (which includes the empty intersection of subsets of X , which is equal to X ), so we add the hypothesis that X is a neighborhood of all points. TODO: when df-fi includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypotheses neiptop.o J = a 𝒫 X | p a a N p
neiptop.0 φ N : X 𝒫 𝒫 X
neiptop.1 φ p X a b b X a N p b N p
neiptop.2 φ p X fi N p N p
neiptop.3 φ p X a N p p a
neiptop.4 φ p X a N p b N p q b a N q
neiptop.5 φ p X X N p
Assertion neiptopreu φ ∃! j TopOn X N = p X nei j p

Proof

Step Hyp Ref Expression
1 neiptop.o J = a 𝒫 X | p a a N p
2 neiptop.0 φ N : X 𝒫 𝒫 X
3 neiptop.1 φ p X a b b X a N p b N p
4 neiptop.2 φ p X fi N p N p
5 neiptop.3 φ p X a N p p a
6 neiptop.4 φ p X a N p b N p q b a N q
7 neiptop.5 φ p X X N p
8 1 2 3 4 5 6 7 neiptoptop φ J Top
9 toptopon2 J Top J TopOn J
10 8 9 sylib φ J TopOn J
11 1 2 3 4 5 6 7 neiptopuni φ X = J
12 11 fveq2d φ TopOn X = TopOn J
13 10 12 eleqtrrd φ J TopOn X
14 1 2 3 4 5 6 7 neiptopnei φ N = p X nei J p
15 nfv p φ j TopOn X
16 nfmpt1 _ p p X nei j p
17 16 nfeq2 p N = p X nei j p
18 15 17 nfan p φ j TopOn X N = p X nei j p
19 nfv p b X
20 18 19 nfan p φ j TopOn X N = p X nei j p b X
21 simpllr φ j TopOn X N = p X nei j p b X p b N = p X nei j p
22 simpr φ j TopOn X N = p X nei j p b X b X
23 22 sselda φ j TopOn X N = p X nei j p b X p b p X
24 id N = p X nei j p N = p X nei j p
25 fvexd N = p X nei j p p X nei j p V
26 24 25 fvmpt2d N = p X nei j p p X N p = nei j p
27 21 23 26 syl2anc φ j TopOn X N = p X nei j p b X p b N p = nei j p
28 27 eqcomd φ j TopOn X N = p X nei j p b X p b nei j p = N p
29 28 eleq2d φ j TopOn X N = p X nei j p b X p b b nei j p b N p
30 20 29 ralbida φ j TopOn X N = p X nei j p b X p b b nei j p p b b N p
31 30 pm5.32da φ j TopOn X N = p X nei j p b X p b b nei j p b X p b b N p
32 toponss j TopOn X b j b X
33 32 ad4ant24 φ j TopOn X N = p X nei j p b j b X
34 topontop j TopOn X j Top
35 34 ad2antlr φ j TopOn X N = p X nei j p j Top
36 opnnei j Top b j p b b nei j p
37 35 36 syl φ j TopOn X N = p X nei j p b j p b b nei j p
38 37 biimpa φ j TopOn X N = p X nei j p b j p b b nei j p
39 33 38 jca φ j TopOn X N = p X nei j p b j b X p b b nei j p
40 37 biimpar φ j TopOn X N = p X nei j p p b b nei j p b j
41 40 adantrl φ j TopOn X N = p X nei j p b X p b b nei j p b j
42 39 41 impbida φ j TopOn X N = p X nei j p b j b X p b b nei j p
43 1 neipeltop b J b X p b b N p
44 43 a1i φ j TopOn X N = p X nei j p b J b X p b b N p
45 31 42 44 3bitr4d φ j TopOn X N = p X nei j p b j b J
46 45 eqrdv φ j TopOn X N = p X nei j p j = J
47 46 ex φ j TopOn X N = p X nei j p j = J
48 47 ralrimiva φ j TopOn X N = p X nei j p j = J
49 simpl j = J p X j = J
50 49 fveq2d j = J p X nei j = nei J
51 50 fveq1d j = J p X nei j p = nei J p
52 51 mpteq2dva j = J p X nei j p = p X nei J p
53 52 eqeq2d j = J N = p X nei j p N = p X nei J p
54 53 eqreu J TopOn X N = p X nei J p j TopOn X N = p X nei j p j = J ∃! j TopOn X N = p X nei j p
55 13 14 48 54 syl3anc φ ∃! j TopOn X N = p X nei j p