Step |
Hyp |
Ref |
Expression |
1 |
|
neiptop.o |
|
2 |
|
neiptop.0 |
|
3 |
|
neiptop.1 |
|
4 |
|
neiptop.2 |
|
5 |
|
neiptop.3 |
|
6 |
|
neiptop.4 |
|
7 |
|
neiptop.5 |
|
8 |
1 2 3 4 5 6 7
|
neiptoptop |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
1 2 3 4 5 6 7
|
neiptopuni |
|
12 |
11
|
fveq2d |
|
13 |
10 12
|
eleqtrrd |
|
14 |
1 2 3 4 5 6 7
|
neiptopnei |
|
15 |
|
nfv |
|
16 |
|
nfmpt1 |
|
17 |
16
|
nfeq2 |
|
18 |
15 17
|
nfan |
|
19 |
|
nfv |
|
20 |
18 19
|
nfan |
|
21 |
|
simpllr |
|
22 |
|
simpr |
|
23 |
22
|
sselda |
|
24 |
|
id |
|
25 |
|
fvexd |
|
26 |
24 25
|
fvmpt2d |
|
27 |
21 23 26
|
syl2anc |
|
28 |
27
|
eqcomd |
|
29 |
28
|
eleq2d |
|
30 |
20 29
|
ralbida |
|
31 |
30
|
pm5.32da |
|
32 |
|
toponss |
|
33 |
32
|
ad4ant24 |
|
34 |
|
topontop |
|
35 |
34
|
ad2antlr |
|
36 |
|
opnnei |
|
37 |
35 36
|
syl |
|
38 |
37
|
biimpa |
|
39 |
33 38
|
jca |
|
40 |
37
|
biimpar |
|
41 |
40
|
adantrl |
|
42 |
39 41
|
impbida |
|
43 |
1
|
neipeltop |
|
44 |
43
|
a1i |
|
45 |
31 42 44
|
3bitr4d |
|
46 |
45
|
eqrdv |
|
47 |
46
|
ex |
|
48 |
47
|
ralrimiva |
|
49 |
|
simpl |
|
50 |
49
|
fveq2d |
|
51 |
50
|
fveq1d |
|
52 |
51
|
mpteq2dva |
|
53 |
52
|
eqeq2d |
|
54 |
53
|
eqreu |
|
55 |
13 14 48 54
|
syl3anc |
|