Metamath Proof Explorer


Theorem neiptoptop

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 7-Jan-2018)

Ref Expression
Hypotheses neiptop.o J = a 𝒫 X | p a a N p
neiptop.0 φ N : X 𝒫 𝒫 X
neiptop.1 φ p X a b b X a N p b N p
neiptop.2 φ p X fi N p N p
neiptop.3 φ p X a N p p a
neiptop.4 φ p X a N p b N p q b a N q
neiptop.5 φ p X X N p
Assertion neiptoptop φ J Top

Proof

Step Hyp Ref Expression
1 neiptop.o J = a 𝒫 X | p a a N p
2 neiptop.0 φ N : X 𝒫 𝒫 X
3 neiptop.1 φ p X a b b X a N p b N p
4 neiptop.2 φ p X fi N p N p
5 neiptop.3 φ p X a N p p a
6 neiptop.4 φ p X a N p b N p q b a N q
7 neiptop.5 φ p X X N p
8 uniss e J e J
9 8 adantl φ e J e J
10 1 2 3 4 5 6 7 neiptopuni φ X = J
11 10 adantr φ e J X = J
12 9 11 sseqtrrd φ e J e X
13 simp-4l φ e J p e c e p c φ
14 12 ad3antrrr φ e J p e c e p c e X
15 simpllr φ e J p e c e p c p e
16 14 15 sseldd φ e J p e c e p c p X
17 13 16 jca φ e J p e c e p c φ p X
18 elssuni c e c e
19 18 ad2antlr φ e J p e c e p c c e
20 17 19 14 3jca φ e J p e c e p c φ p X c e e X
21 simpr φ e J e J
22 21 sselda φ e J c e c J
23 1 neipeltop c J c X p c c N p
24 23 simprbi c J p c c N p
25 22 24 syl φ e J c e p c c N p
26 25 r19.21bi φ e J c e p c c N p
27 26 adantllr φ e J p e c e p c c N p
28 sseq1 a = c a e c e
29 28 3anbi2d a = c φ p X a e e X φ p X c e e X
30 eleq1 a = c a N p c N p
31 29 30 anbi12d a = c φ p X a e e X a N p φ p X c e e X c N p
32 31 imbi1d a = c φ p X a e e X a N p e N p φ p X c e e X c N p e N p
33 32 imbi2d a = c φ e J φ p X a e e X a N p e N p φ e J φ p X c e e X c N p e N p
34 ssidd φ X X
35 7 ralrimiva φ p X X N p
36 1 neipeltop X J X X p X X N p
37 34 35 36 sylanbrc φ X J
38 pwexg X J 𝒫 X V
39 rabexg 𝒫 X V a 𝒫 X | p a a N p V
40 37 38 39 3syl φ a 𝒫 X | p a a N p V
41 1 40 eqeltrid φ J V
42 41 adantr φ e J J V
43 42 21 ssexd φ e J e V
44 uniexg e V e V
45 sseq2 b = e a b a e
46 sseq1 b = e b X e X
47 45 46 3anbi23d b = e φ p X a b b X φ p X a e e X
48 47 anbi1d b = e φ p X a b b X a N p φ p X a e e X a N p
49 eleq1 b = e b N p e N p
50 48 49 imbi12d b = e φ p X a b b X a N p b N p φ p X a e e X a N p e N p
51 50 3 vtoclg e V φ p X a e e X a N p e N p
52 43 44 51 3syl φ e J φ p X a e e X a N p e N p
53 33 52 chvarvv φ e J φ p X c e e X c N p e N p
54 53 ad3antrrr φ e J p e c e p c φ p X c e e X c N p e N p
55 20 27 54 mp2and φ e J p e c e p c e N p
56 simpr φ e J p e p e
57 eluni2 p e c e p c
58 56 57 sylib φ e J p e c e p c
59 55 58 r19.29a φ e J p e e N p
60 59 ralrimiva φ e J p e e N p
61 1 neipeltop e J e X p e e N p
62 12 60 61 sylanbrc φ e J e J
63 62 ex φ e J e J
64 63 alrimiv φ e e J e J
65 inss1 e f e
66 1 neipeltop e J e X p e e N p
67 66 simplbi e J e X
68 67 ad2antlr φ e J f J e X
69 65 68 sstrid φ e J f J e f X
70 simplll φ e J f J p e f φ
71 simpllr φ e J f J p e f e J
72 71 67 syl φ e J f J p e f e X
73 simpr φ e J f J p e f p e f
74 73 elin1d φ e J f J p e f p e
75 72 74 sseldd φ e J f J p e f p X
76 70 75 4 syl2anc φ e J f J p e f fi N p N p
77 fvex N p V
78 66 simprbi e J p e e N p
79 78 r19.21bi e J p e e N p
80 71 74 79 syl2anc φ e J f J p e f e N p
81 simplr φ e J f J p e f f J
82 73 elin2d φ e J f J p e f p f
83 1 neipeltop f J f X p f f N p
84 83 simprbi f J p f f N p
85 84 r19.21bi f J p f f N p
86 81 82 85 syl2anc φ e J f J p e f f N p
87 inelfi N p V e N p f N p e f fi N p
88 77 80 86 87 mp3an2i φ e J f J p e f e f fi N p
89 76 88 sseldd φ e J f J p e f e f N p
90 89 ralrimiva φ e J f J p e f e f N p
91 1 neipeltop e f J e f X p e f e f N p
92 69 90 91 sylanbrc φ e J f J e f J
93 92 ralrimiva φ e J f J e f J
94 93 ralrimiva φ e J f J e f J
95 istopg J V J Top e e J e J e J f J e f J
96 41 95 syl φ J Top e e J e J e J f J e f J
97 64 94 96 mpbir2and φ J Top