Metamath Proof Explorer


Theorem neiptopuni

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypotheses neiptop.o J = a 𝒫 X | p a a N p
neiptop.0 φ N : X 𝒫 𝒫 X
neiptop.1 φ p X a b b X a N p b N p
neiptop.2 φ p X fi N p N p
neiptop.3 φ p X a N p p a
neiptop.4 φ p X a N p b N p q b a N q
neiptop.5 φ p X X N p
Assertion neiptopuni φ X = J

Proof

Step Hyp Ref Expression
1 neiptop.o J = a 𝒫 X | p a a N p
2 neiptop.0 φ N : X 𝒫 𝒫 X
3 neiptop.1 φ p X a b b X a N p b N p
4 neiptop.2 φ p X fi N p N p
5 neiptop.3 φ p X a N p p a
6 neiptop.4 φ p X a N p b N p q b a N q
7 neiptop.5 φ p X X N p
8 elpwi a 𝒫 X a X
9 8 ad2antlr p J a 𝒫 X p a a X
10 simpr p J a 𝒫 X p a p a
11 9 10 sseldd p J a 𝒫 X p a p X
12 1 unieqi J = a 𝒫 X | p a a N p
13 12 eleq2i p J p a 𝒫 X | p a a N p
14 elunirab p a 𝒫 X | p a a N p a 𝒫 X p a p a a N p
15 13 14 bitri p J a 𝒫 X p a p a a N p
16 simpl p a p a a N p p a
17 16 reximi a 𝒫 X p a p a a N p a 𝒫 X p a
18 15 17 sylbi p J a 𝒫 X p a
19 11 18 r19.29a p J p X
20 19 a1i φ p J p X
21 20 ssrdv φ J X
22 ssidd φ X X
23 7 ralrimiva φ p X X N p
24 1 neipeltop X J X X p X X N p
25 22 23 24 sylanbrc φ X J
26 unissel J X X J J = X
27 21 25 26 syl2anc φ J = X
28 27 eqcomd φ X = J